Project Details
Abstract
在現代對高性能鋰電池需求日益增長的背景下,電極材料的研究和發展是一項包含多個面向的挑戰。高功率、高能量密度以及長期循環穩定性及對昂貴過渡金屬的依賴等方面的性能和製造成本仍然不盡人意。本研究計劃旨在整合和優化不同尺度的模擬方法,藉由機器學習方法結合第一原理計算與大尺度分子動力學模擬,建構出的機器學習驅動多尺度模擬應用程序能夠更精準地模擬原子在材料內的行為,加速篩選出具有高效能和高安全性的新穎電極材料。
Project IDs
Project ID:PA11307-0919
External Project ID:NSTC113-2112-M182-001
External Project ID:NSTC113-2112-M182-001
Status | Active |
---|---|
Effective start/end date | 01/06/24 → 31/05/25 |
Keywords
- Lithium-ion battery
- Metal-Organic Frameworks
- doping
- Machine learning interatomic potential
- first principles
- density functional theory
- molecular dynamics simulations
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.