Symmetry-Based Deep Learning Applying on Correlation between Nasal Structure and Complaints of Empty Nose Syndrome Patients

Project: National Science and Technology CouncilNational Science and Technology Council Academic Grants

Project Details

Abstract

本研究計畫係開發空鼻症影像分析的深度學習演算法,以及建立鼻腔結構與空鼻症病患主訴之間的預測模型。藉由此研究結果的呈現,醫生與病人可藉以在資訊透明且資訊平衡的基礎上討論臨床作為,增加手術的可預測性,進而提升醫療品質與手術規畫以及術後評估的能力。

Project IDs

Project ID:PB11107-7647
External Project ID:MOST111-2221-E182-019
StatusFinished
Effective start/end date01/08/2231/07/23

Keywords

  • Empty nose syndrome
  • Paranasal sinus
  • Nasal cavity symmetry
  • Turbinates
  • Deep learning
  • Symmetry-based deep learning algorithm

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.