Using Physiomarkers Obtained from Electronic Health Records, Wearable Devices, and Personal Portable Devices to Develop and Update Machine Learning and Transfer Learning Models to Predict Patient-Centered Outcomes

  • Chen, Kuan-Fu (PI)
  • Lin, Chen (CoPI)
  • Lo, Men Tzung (CoPI)

Project: National Science and Technology CouncilNational Science and Technology Council Academic Grants

Project Details

Abstract

我們預計在這個敗血症世代研究中,使用不同的生物及生理標記,加上不需與病人接觸的遠端光體積變化描記圖法,配合機器學習、聯邦及遷移式學習,發展出可使用在不同規模醫療院所、各年齡層與各種感染部位病人的臨床預測模型,來預測病患為中心的預後:如治療反應、死亡及敗血性休克的發生,進一步減少敗血症引起的併發症,並且為有限醫療資源的妥適應用做指引。

Project IDs

Project ID:PC11107-5268
External Project ID:MOST111-2314-B182-017-MY3
StatusFinished
Effective start/end date01/08/2231/07/23

Keywords

  • sepsis
  • biomarker
  • clinical prediction rule
  • emergency department
  • unsupervised learning
  • cohort study
  • machine learning
  • deep learning
  • therapy responsiveness
  • heart rate variability

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.