Project Details
Abstract
我們預計在這個敗血症世代研究中,使用不同的生物及生理標記,加上不需與病人接觸的遠端光體積變化描記圖法,配合機器學習、聯邦及遷移式學習,發展出可使用在不同規模醫療院所、各年齡層與各種感染部位病人的臨床預測模型,來預測病患為中心的預後:如治療反應、死亡及敗血性休克的發生,進一步減少敗血症引起的併發症,並且為有限醫療資源的妥適應用做指引。
Project IDs
Project ID:PC11107-5268
External Project ID:MOST111-2314-B182-017-MY3
External Project ID:MOST111-2314-B182-017-MY3
Status | Finished |
---|---|
Effective start/end date | 01/08/22 → 31/07/23 |
Keywords
- sepsis
- biomarker
- clinical prediction rule
- emergency department
- unsupervised learning
- cohort study
- machine learning
- deep learning
- therapy responsiveness
- heart rate variability
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.