Abstract
We have developed a polyaniline/carboxy-functionalized multiwalled carbon nanotube (PAn/MWCNTCOOH) nanocomposite by blending the emeraldine base form of polyaniline (PAn) and carboxy-functionalized multiwalled carbon nanotubes (MWCNT) in dried dimethyl sulfoxide (DMSO) at room temperature. The conductivity of the resulting PAn/MWCNTCOOH was 3.6 × 10-3 S cm -1, mainly as a result of the protonation of the PAn with the carboxyl group and the radical cations of the MWCNT fragments. Horseradish peroxidase (HRP) was immobilized within the PAn/MWCNTCOOH nanocomposite modified Au (PAn/MWCNTCOOH/Au) electrode to form HRP/PAn/MWCNTCOOH/Au for use as a hydrogen peroxide (H2O2) sensor. The adsorption between the negatively charged PAn/MWCNTCOOH nanocomposite and the positively charged HRP resulted in a very good sensitivity to H2O2 and an increased electrochemically catalytical current during cyclic voltammetry. The HRP/PAn/MWCNTCOOH/Au electrode exhibited a broad linear response range for H2O2 concentrations (86 μM-10 mM). This sensor exhibited good sensitivity (194.9 μA mM-1 cm-2), a fast response time (2.9 s), and good reproducibility and stability at an applied potential of -0.35 V. The construction of the enzymatic sensor demonstrated the potential application of PAn/MWCNTCOOH nanocomposites for the detection of H2O2 with high performance and excellent stability.
Original language | English |
---|---|
Pages (from-to) | 9488-9495 |
Number of pages | 8 |
Journal | Electrochimica Acta |
Volume | 56 |
Issue number | 25 |
DOIs | |
State | Published - 30 10 2011 |
Keywords
- Carboxy-functionalized multiwalled carbon nanotubes
- HO sensor
- Horseradish peroxidase
- Polyaniline