TY - JOUR
T1 - A multimodality reporter gene for monitoring transplanted stem cells
AU - Pei, Zhijun
AU - Lan, Xiaoli
AU - Cheng, Zhen
AU - Qin, Chunxia
AU - Wang, Peng
AU - He, Yong
AU - Yen, Tzu Chen
AU - Tian, Yueli
AU - Mghanga, Fabian Pius
AU - Zhang, Yongxue
PY - 2012/8
Y1 - 2012/8
N2 - Introduction: The aim of this study is to explore the feasibility of a triple-fused reporter gene, termed TGF [herpes simplex virus type 1 thymidine kinase (HSV1-tk), enhanced green fluorescent protein (eGFP) and firefly luciferase (Fluc)], to monitor stem cells using multimodality molecular imaging. Methods: A recombinant adenovirus vector carrying the triple-fused reporter gene (Ad5-TGF) was constructed. Bone marrow mesenchymal stem cells (BMSCs) were transfected with different virus titers of Ad5-TGF [multiplicities of infection (MOIs) were 0, 50, 100, 150, 200 and 250]. The mRNA and protein expressions of HSV1-tk, eGFP and Fluc in the transfected BMSCs were evaluated using polymerase chain reaction and Western blot. After the transfection of the BMSCs with different virus titers of Ad5-TGF (MOIs were 25, 50, 75, 100 and 125), their uptake rates of 131I-FIAU were measured. Whole-body fluorescence, bioluminescence and micro-positron emission tomography (PET) images were acquired 1 day after the transfected BMSCs were injected into the left forelimb of rats. Results: After the transfection with different titers of Ad5-TGF, the positive transfection rate reached a peak (70%) when the MOI was 100. HSV1-tk, eGFP and Fluc mRNA and protein were detected in the Ad5-TGF-transfected BMSCs, which implies their successful transfection and expression. The BMSCs uptake of 131I-FIAU increased with the adenovirus titer and incubation time and reached a plateau (approximately 5.3%) after 3 h. Strong signals were observed in the injected left forearms in the fluorescence, bioluminescence and micro-PET images. Conclusions: A triple-fused reporter gene, TGF, can be used as a multifunctional molecular probe for multimodality imaging.
AB - Introduction: The aim of this study is to explore the feasibility of a triple-fused reporter gene, termed TGF [herpes simplex virus type 1 thymidine kinase (HSV1-tk), enhanced green fluorescent protein (eGFP) and firefly luciferase (Fluc)], to monitor stem cells using multimodality molecular imaging. Methods: A recombinant adenovirus vector carrying the triple-fused reporter gene (Ad5-TGF) was constructed. Bone marrow mesenchymal stem cells (BMSCs) were transfected with different virus titers of Ad5-TGF [multiplicities of infection (MOIs) were 0, 50, 100, 150, 200 and 250]. The mRNA and protein expressions of HSV1-tk, eGFP and Fluc in the transfected BMSCs were evaluated using polymerase chain reaction and Western blot. After the transfection of the BMSCs with different virus titers of Ad5-TGF (MOIs were 25, 50, 75, 100 and 125), their uptake rates of 131I-FIAU were measured. Whole-body fluorescence, bioluminescence and micro-positron emission tomography (PET) images were acquired 1 day after the transfected BMSCs were injected into the left forelimb of rats. Results: After the transfection with different titers of Ad5-TGF, the positive transfection rate reached a peak (70%) when the MOI was 100. HSV1-tk, eGFP and Fluc mRNA and protein were detected in the Ad5-TGF-transfected BMSCs, which implies their successful transfection and expression. The BMSCs uptake of 131I-FIAU increased with the adenovirus titer and incubation time and reached a plateau (approximately 5.3%) after 3 h. Strong signals were observed in the injected left forearms in the fluorescence, bioluminescence and micro-PET images. Conclusions: A triple-fused reporter gene, TGF, can be used as a multifunctional molecular probe for multimodality imaging.
KW - Molecular imaging
KW - Multimodality imaging
KW - Reporter gene
KW - Stem cells
UR - http://www.scopus.com/inward/record.url?scp=84863992028&partnerID=8YFLogxK
U2 - 10.1016/j.nucmedbio.2011.12.014
DO - 10.1016/j.nucmedbio.2011.12.014
M3 - 文章
C2 - 22336371
AN - SCOPUS:84863992028
SN - 0969-8051
VL - 39
SP - 813
EP - 820
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
IS - 6
ER -