Abstract
This paper presents a multiple criteria decision approach for trading weekly tool capacity between two semiconductor fabs. Due to the high-cost characteristics of tools, a semiconductor company with multiple fabs (factories) may weekly trade their tool capacities. That is, a lowly utilized workstation in one fab may sell capacity to its highly utilized counterpart in the other fab. Wu and Chang [Wu, M. C., & Chang, W. J. (2007). A short-term capacity trading method for semiconductor fabs with partnership. Expert Systems with Application, 33(2), 476-483] have proposed a method for making weekly trading decisions between two wafer fabs. Compared with no trading, their method could effectively increase the two fabs' throughput for a longer period such as 8 weeks. However, their trading decision-making is based on a single criterion-number of weekly produced operations, which may still leave a space for improving. We therefore proposed a multiple criteria trading decision approach in order to further increase the two fabs' throughput. The three decision criteria are: number of operations, number of layers, and number of wafers. This research developed a method to find an optimal weighting vector for the three criteria. The method firstly used NN + GA (neural network + genetic algorithm) to find an optimal trading decision in each week, and then used DOE + RSM (design of experiment + response surface method) to find an optimal weighting vector for a longer period, say 10 weeks. Experiments indicated that the multiple criteria approach indeed outperformed the previous method in terms the fabs' long-term throughput.
Original language | English |
---|---|
Pages (from-to) | 938-945 |
Number of pages | 8 |
Journal | Expert Systems with Applications |
Volume | 35 |
Issue number | 3 |
DOIs | |
State | Published - 10 2008 |
Externally published | Yes |
Keywords
- Capacity trading
- Design of experiment
- Genetic algorithm
- Neural network
- Response surface method
- Semiconductor