Abstract
Background Kawasaki disease is the most common cause of acquired heart disease among febrile children under the age of 5 years old. It is also a clinically diagnosed disease. In this study, we developed and assessed a novel score system using objective parameters to differentiate Kawasaki disease from febrile children. Methods We analyzed 6,310 febrile children and 485 Kawasaki disease subjects in this study. We collected biological parameters of a routine blood test, including complete blood count with differential, C-reactive protein, aspartate aminotransferase, and alanine aminotransferase. Receiver operating characteristic curve, logistic regression, and Youden's index were all used to develop the prediction model. Two other independent cohorts from different hospitals were used for verification. Results We obtained eight independent predictors (platelets, eosinophil, alanine aminotransferase, C-reactive protein, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and monocyte) and found the top three scores to be eosinophil >1.5% (score: 7), alanine aminotransferase >30 U/L (score: 6), and C-reactive protein >25 mg/L (score: 6). A score of 14 represents the best sensitivity value plus specificity prediction rate for Kawasaki disease. The sensitivity, specificity, and accuracy for our cohort were 0.824, 0.839, and 0.838, respectively. The verification test of two independent cohorts of Kawasaki disease patients (N = 103 and 170) from two different institutes had a sensitivity of 0.780 (213/273). Conclusion Our findings demonstrate a novel score system with good discriminatory ability for differentiating between children with Kawasaki disease and other febrile children, as well as highlight the importance of eosinophil in Kawasaki disease. Using this novel score system can help first-line physicians diagnose and then treat Kawasaki disease early.
Original language | English |
---|---|
Article number | e0244721 |
Journal | PLoS ONE |
Volume | 16 |
Issue number | 1 January |
DOIs | |
State | Published - 01 2021 |
Bibliographical note
Publisher Copyright:© 2021 Tsai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.