Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats

Yeung Jen Chen, Yur Ren Kuo, Kuender D. Yang, Ching Jen Wang, Shyr Ming Sheen Chen, Hui Chen Huang, Ya Ju Yang, Sun Yi-Chih, Feng Sheng Wang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

70 Scopus citations

Abstract

Extracorporeal shock waves (ESW) have recently been used in bone repair. Extracellular signal-regulated kinase (ERK) and p38 kinase are found to act as important mediators for osteogenic factor and mechanical-stimulated proliferation and differentiation of bone-forming cells. A previous study reported that ESW promoted healing of segmental defects in rats by inducing bone morophogenetic proteins (Bone 32 (2003) 387-396) and stimulating osteogenic differentiation of mesenchymal stem cells. In this study, we found that ERK and p38 activation was involved in ESW-augmented bone regeneration of segmental defects. ESW treatment (0.16 mJ/mm2, 1 Hz, 500 impulses) rapidly promoted [3H]-thymidine uptake in 1 day and progressively increased alkaline phosphatase activity, collagen I, II, and osteocalcin synthesis in callus organ culture within 14 days after treatment. Results of [γ-32P]-phosphotransferase activity assay showed that ERK and p38 in calluses were rapidly activated 1 day and 7 days after ESW treatment, respectively. Histological observation showed that segmental defects subjected to ESW treatment underwent typical bone formation (mesenchymal cell aggregation, hypertrophic cartilage, and endochondral/intramembrane ossification). Intensive bone formation coincided with evident expression of phosphorylated ERK and p38. Moreover, expression of phosphorylated ERK persisted in mesenchymal, chondral, and osteoblastic cells at newly developed bone and cartilage, and the expression of activated p38 was evident on chondral cells located at hypertrophic cartilage. Our findings suggest that mitogen-activated protein kinases (MAPK) regulate the stimulation of biophysical ESW, triggering mitogenic and osteogenic responses in the defects. ERK phosphorylation is active throughout the period of ESW-induced bone regeneration. p38 activation most likely plays an important role in signaling cartilage formation in callus.

Original languageEnglish
Pages (from-to)466-477
Number of pages12
JournalBone
Volume34
Issue number3
DOIs
StatePublished - 03 2004

Keywords

  • Cartilage
  • Extracellular signal-regulated kinase (ERK)
  • Segmental defect
  • Shock waves
  • p38 kinase

Fingerprint

Dive into the research topics of 'Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats'. Together they form a unique fingerprint.

Cite this