TY - JOUR
T1 - Adsorption of ciprofloxacin in water using Fe3O4 nanoparticles formed at low temperature and high reactant concentrations in a rotating packed bed with co-precipitation
AU - Lin, Chia Chang
AU - Lee, Cheng Yen
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/1/15
Y1 - 2020/1/15
N2 - A rotating packed bed was used to form Fe3O4 nanoparticles at 25 °C with a rotational speed of 1800 rpm, flow rates of 0.5 L/min, and FeCl2, FeCl3, and NaOH concentrations of 0.15 mol/L, 0.3 mol/L, and 1.2 mol/L, respectively. The as-formed Fe3O4 nanoparticles had an average diameter of 9 nm, a BET specific surface area of 140 m2/g, and a saturation magnetization of 68 emu/g. The effectiveness of the as-formed Fe3O4 nanoparticles in adsorbing ciprofloxacin in water was evaluated. Increasing the Fe3O4 dosage from 1 to 2.5 g/L reduced the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles but increased the efficiency of removal of ciprofloxacin. The equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles increased with the initial concentration of ciprofloxacin at all pH values. The equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was highest at pH 7 with low initial concentrations of ciprofloxacin (10–30 mg/L). However, with high initial concentrations of ciprofloxacin (40–100 mg/L), the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was highest at pH 8. The adsorption of ciprofloxacin onto the as-formed Fe3O4 nanoparticles was more consistent with the Freundlich model than with the Langmuir model at all pH values. At pH 8, an initial concentration of ciprofloxacin of 100 mg/L, and an Fe3O4 dosage of 2.5 g/L, the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was around 24 mg/g. The results demonstrate that the as-formed Fe3O4 nanoparticles are an efficient adsorbent of ciprofloxacin from water.
AB - A rotating packed bed was used to form Fe3O4 nanoparticles at 25 °C with a rotational speed of 1800 rpm, flow rates of 0.5 L/min, and FeCl2, FeCl3, and NaOH concentrations of 0.15 mol/L, 0.3 mol/L, and 1.2 mol/L, respectively. The as-formed Fe3O4 nanoparticles had an average diameter of 9 nm, a BET specific surface area of 140 m2/g, and a saturation magnetization of 68 emu/g. The effectiveness of the as-formed Fe3O4 nanoparticles in adsorbing ciprofloxacin in water was evaluated. Increasing the Fe3O4 dosage from 1 to 2.5 g/L reduced the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles but increased the efficiency of removal of ciprofloxacin. The equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles increased with the initial concentration of ciprofloxacin at all pH values. The equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was highest at pH 7 with low initial concentrations of ciprofloxacin (10–30 mg/L). However, with high initial concentrations of ciprofloxacin (40–100 mg/L), the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was highest at pH 8. The adsorption of ciprofloxacin onto the as-formed Fe3O4 nanoparticles was more consistent with the Freundlich model than with the Langmuir model at all pH values. At pH 8, an initial concentration of ciprofloxacin of 100 mg/L, and an Fe3O4 dosage of 2.5 g/L, the equilibrium adsorption capacity of the as-formed Fe3O4 nanoparticles was around 24 mg/g. The results demonstrate that the as-formed Fe3O4 nanoparticles are an efficient adsorbent of ciprofloxacin from water.
KW - Adsorption
KW - Antibiotic
KW - Ciprofloxacin
KW - FeO nanoparticles
KW - Rotating packed bed
UR - http://www.scopus.com/inward/record.url?scp=85072556643&partnerID=8YFLogxK
U2 - 10.1016/j.matchemphys.2019.122049
DO - 10.1016/j.matchemphys.2019.122049
M3 - 文章
AN - SCOPUS:85072556643
SN - 0254-0584
VL - 240
JO - Materials Chemistry and Physics
JF - Materials Chemistry and Physics
M1 - 122049
ER -