TY - JOUR
T1 - An aqueous-based process to bioactivate poly(ε-caprolactone)/mesoporous bioglass composite surfaces by prebiotic chemistry-inspired polymer coatings for biomedical applications
AU - Cheng, Sheng Ying
AU - Chiang, Yu Lun
AU - Chang, Yu Han
AU - Thissen, Helmut
AU - Tsai, Shiao Wen
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9
Y1 - 2021/9
N2 - Despite the wide use of aliphatic polyesters, such as poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), for many biomedical applications, these materials are limited due to their hydrophobic properties and lack of functional groups to bond with ligands to enhance the cell reorganization. Recently, a composite consisting of bioglass and PCL was demonstrated to enhance the mechanical strength and to improve the degradation rate. Although numerous approaches have been developed to improve the wettability of aliphatic polyesters to create a favorable interface with cells, only few surface modification methods can be independently applied to surfaces with different material. In this work, mesoporous bioglass (MBG) nanoparticles embedded in PCL films were modified by the polymerization of aminomalonitrile (AMN) with 3,4,5-trihydroxybenzaldehyde (THBA). The copolymer layer was further utilized as a mediator to conjugate chitosan and evaluate the antibacterial efficacy. Our results show that the hydrophilicity of the composite membranes significantly improved after treatment. In addition, after immersion in simulated body fluid (SBF) for 14 days, hydroxyapatite formation was only observed on the treated membranes. This result demonstrates that the surface treatment did not alter the MBG bioactivity. Moreover, the cell culture results reveal that the extension level of cells and expression of alkaline phosphatase activity (ALP) of osteoblast-like (MG63) cells were higher on treated composite films compared to untreated ones. The results imply that the treatment procedure can be simultaneously and homogeneously applied to the organic/inorganic composites. In addition, Staphylococcus aureus adhesion on AMN-co-THBA and chitosan/ AMN-co-THBA was significantly lower than untreated PCL. Moreover, the percentage of dead bacteria was highest on the chitosan/ AMN-co-THBA membranes. These results indicate that the AMN-co-THBA modification can be used in composite materials and complex constructs, and it provides a potential method to create versatile surface properties for biomedical applications.
AB - Despite the wide use of aliphatic polyesters, such as poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), for many biomedical applications, these materials are limited due to their hydrophobic properties and lack of functional groups to bond with ligands to enhance the cell reorganization. Recently, a composite consisting of bioglass and PCL was demonstrated to enhance the mechanical strength and to improve the degradation rate. Although numerous approaches have been developed to improve the wettability of aliphatic polyesters to create a favorable interface with cells, only few surface modification methods can be independently applied to surfaces with different material. In this work, mesoporous bioglass (MBG) nanoparticles embedded in PCL films were modified by the polymerization of aminomalonitrile (AMN) with 3,4,5-trihydroxybenzaldehyde (THBA). The copolymer layer was further utilized as a mediator to conjugate chitosan and evaluate the antibacterial efficacy. Our results show that the hydrophilicity of the composite membranes significantly improved after treatment. In addition, after immersion in simulated body fluid (SBF) for 14 days, hydroxyapatite formation was only observed on the treated membranes. This result demonstrates that the surface treatment did not alter the MBG bioactivity. Moreover, the cell culture results reveal that the extension level of cells and expression of alkaline phosphatase activity (ALP) of osteoblast-like (MG63) cells were higher on treated composite films compared to untreated ones. The results imply that the treatment procedure can be simultaneously and homogeneously applied to the organic/inorganic composites. In addition, Staphylococcus aureus adhesion on AMN-co-THBA and chitosan/ AMN-co-THBA was significantly lower than untreated PCL. Moreover, the percentage of dead bacteria was highest on the chitosan/ AMN-co-THBA membranes. These results indicate that the AMN-co-THBA modification can be used in composite materials and complex constructs, and it provides a potential method to create versatile surface properties for biomedical applications.
KW - Aliphatic polyesters
KW - Bioactivity
KW - Composites
KW - Hydrophilicity
KW - Mesoporous bioglass
UR - http://www.scopus.com/inward/record.url?scp=85107674608&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfb.2021.111913
DO - 10.1016/j.colsurfb.2021.111913
M3 - 文章
C2 - 34120089
AN - SCOPUS:85107674608
SN - 0927-7765
VL - 205
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
M1 - 111913
ER -