An enriched environment improves cognitive performance after early-life status epilepticus accompanied by an increase in phosphorylation of extracellular signal-regulated kinase 2

Chien An Wang, Ming Chi Lai, Chun Chung Lui, San Nan Yang, Mao Meng Tiao, Chih Sung Hsieh, Hung Hong Lin, Li Tung Huang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

17 Scopus citations

Abstract

An enriched environment can enhance brain recovery in animals with early-life status epilepticus (SE). The purpose of this study was to determine the effects of early-life SE on spatial memory and hippocampal extracellular signal-regulated kinase (ERK) level, and the possible therapeutic effects of the enriched environment. Rats were assigned randomly to four groups: (1) control rats (nonenriched control); (2) control rats housed in an enriched environment from Postnatal Day (P) 25 to P40 (enriched control); (3) rats in which SE was induced with lithium-pilocarpine (Li-PC) at P21 (nonenriched SE); and (4) rats in which SE was induced with Li-PC at P21 and then housed in an enriched environment from P25 to P40 (enriched SE). As adults, the rats underwent spatial learning and memory tests in the Morris water maze between P50 and P55. At P55, subsets of animals were evaluated for expression of hippocampal ERK1/2 phosphorylation immediately following completion of the Morris water maze. At ∼P100, another set of animals was tested for seizure threshold. When studied as adults, only the nonenriched SE group had a spatial memory deficit. The nonenriched SE group also exhibited lower levels of phosphorylated ERK2 as compared with the nonenriched control, enriched control, and enriched SE groups. Both the nonenriched SE and enriched SE groups had reduced seizure thresholds as compared with the nonenriched control and enriched control groups. Results from this study demonstrate that an enriched environment improves spatial memory in rats subjected to early-life SE, possibly through upregulation of phosphorylated ERK2 in the hippocampus. However, an enriched environment has no effect on seizure threshold.

Original languageEnglish
Pages (from-to)303-309
Number of pages7
JournalEpilepsy and Behavior
Volume11
Issue number3
DOIs
StatePublished - 11 2007

Keywords

  • Enriched environment
  • Extracellular signal-regulated kinase
  • Spatial learning and memory
  • Status epilepticus

Fingerprint

Dive into the research topics of 'An enriched environment improves cognitive performance after early-life status epilepticus accompanied by an increase in phosphorylation of extracellular signal-regulated kinase 2'. Together they form a unique fingerprint.

Cite this