TY - JOUR
T1 - An examination system to detect deep vein thrombosis of a lower limb using light reflection rheography
AU - Liu, Shing Hong
AU - Wang, Jia Jung
AU - Chen, Wenxi
AU - Pan, Kuo Li
AU - Su, Chun Hung
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - Deep vein thrombosis (DVT) of lower limbs can easily arise from prolonged sitting or standing. Elders and pregnant women are most likely to have this disease. When the embolus of DVT comes to pass the lung, it will become a life-threatening disease. Thus, for DVT disease, early detection and the early treatment are needed. The goal of this study was to develop an examination system to be used at non-medical places to detect the DVT of lower limbs with light reflection rheography (LRR). Consisting of a wearable device and a mobile application (APP), the system is operated in a wireless manner to control the actions of sensors and display and store the LRR signals on the APP. Then, the recorded LRR signals are processed to find the parameters of DVT examination. Twenty subjects were recruited to perform experiments. The veins of lower limbs were occluded by pressuring the cuff up to 100 mmHg and 150 mmHg to simulate the slight and serious DVT scenarios, respectively. Six characteristic parameters were defined to classify whether there was positive or negative DVT using the receiver operating characteristic curves, including the slopes of emptying and refilling curves in the LRR signal, and the changes of venous pump volume. Under the slight DVT scenario (0 mmHg vs. 100 mmHg), the first three parameters, m10, m40, and m50, had accuracies of 72%, 69%, and 69%, respectively. Under the serious DVT scenario (0 mmHg vs. 150 mmHg), m10, m40, and m50 achieved accuracies of 73%, 76%, and 73%, respectively. The experimental results show that this proposed examination system may be practical as an auxiliary tool to screen DVT in homecare settings.
AB - Deep vein thrombosis (DVT) of lower limbs can easily arise from prolonged sitting or standing. Elders and pregnant women are most likely to have this disease. When the embolus of DVT comes to pass the lung, it will become a life-threatening disease. Thus, for DVT disease, early detection and the early treatment are needed. The goal of this study was to develop an examination system to be used at non-medical places to detect the DVT of lower limbs with light reflection rheography (LRR). Consisting of a wearable device and a mobile application (APP), the system is operated in a wireless manner to control the actions of sensors and display and store the LRR signals on the APP. Then, the recorded LRR signals are processed to find the parameters of DVT examination. Twenty subjects were recruited to perform experiments. The veins of lower limbs were occluded by pressuring the cuff up to 100 mmHg and 150 mmHg to simulate the slight and serious DVT scenarios, respectively. Six characteristic parameters were defined to classify whether there was positive or negative DVT using the receiver operating characteristic curves, including the slopes of emptying and refilling curves in the LRR signal, and the changes of venous pump volume. Under the slight DVT scenario (0 mmHg vs. 100 mmHg), the first three parameters, m10, m40, and m50, had accuracies of 72%, 69%, and 69%, respectively. Under the serious DVT scenario (0 mmHg vs. 150 mmHg), m10, m40, and m50 achieved accuracies of 73%, 76%, and 73%, respectively. The experimental results show that this proposed examination system may be practical as an auxiliary tool to screen DVT in homecare settings.
KW - Deep vein thrombosis
KW - Light reflection rheography
KW - Photoplethysmography
KW - Wearable device
UR - http://www.scopus.com/inward/record.url?scp=85103495494&partnerID=8YFLogxK
U2 - 10.3390/s21072446
DO - 10.3390/s21072446
M3 - 文章
C2 - 33918113
AN - SCOPUS:85103495494
SN - 1424-8220
VL - 21
JO - Sensors
JF - Sensors
IS - 7
M1 - 2446
ER -