TY - JOUR
T1 - Assembly of polyelectrolyte multilayer films on supported lipid bilayers to induce neural stem/progenitor cell differentiation into functional neurons
AU - Lee, I. Chi
AU - Wu, Yu Chieh
PY - 2014/8/27
Y1 - 2014/8/27
N2 - The key factors affecting the success of neural engineering using neural stem/progenitor cells (NSPCs) are the neuron quantity, the guidance of neurite outgrowth, and the induction of neurons to form functional synapses at synaptic junctions. Herein, a biomimetic material comprising a supported lipid bilayer (SLB) with adsorbed sequential polyelectrolyte multilayer (PEM) films was fabricated to induce NSPCs to form functional neurons without the need for serum and growth factors in a short-term culture. SLBs are suitable artificial substrates for neural engineering due to their structural similarity to synaptic membranes. In addition, PEM film adsorption provides protection for the SLB as well as the ability to vary the surface properties to evaluate the effects of physical and mechanical signals on NSPC differentiation. Our results revealed that NSPCs were inducible on SLB-PEM films consisting of up to eight alternating layers. In addition, the process outgrowth length, the percentage of differentiated neurons, and the synaptic function were regulated by the number of layers and the surface charge of the outermost layer. The average process outgrowth length was greater than 500 μm on SLB-PLL/PLGA (n = 7.5) after only 3 days of culture. Moreover, the quantity and quality of the differentiated neurons were obviously enhanced on the SLB-PEM system compared with those on the PEM-only substrates. These results suggest that the PEM films can induce NSPC adhesion and differentiation and that an SLB base may enhance neuron differentiation and trigger the formation of functional synapses.
AB - The key factors affecting the success of neural engineering using neural stem/progenitor cells (NSPCs) are the neuron quantity, the guidance of neurite outgrowth, and the induction of neurons to form functional synapses at synaptic junctions. Herein, a biomimetic material comprising a supported lipid bilayer (SLB) with adsorbed sequential polyelectrolyte multilayer (PEM) films was fabricated to induce NSPCs to form functional neurons without the need for serum and growth factors in a short-term culture. SLBs are suitable artificial substrates for neural engineering due to their structural similarity to synaptic membranes. In addition, PEM film adsorption provides protection for the SLB as well as the ability to vary the surface properties to evaluate the effects of physical and mechanical signals on NSPC differentiation. Our results revealed that NSPCs were inducible on SLB-PEM films consisting of up to eight alternating layers. In addition, the process outgrowth length, the percentage of differentiated neurons, and the synaptic function were regulated by the number of layers and the surface charge of the outermost layer. The average process outgrowth length was greater than 500 μm on SLB-PLL/PLGA (n = 7.5) after only 3 days of culture. Moreover, the quantity and quality of the differentiated neurons were obviously enhanced on the SLB-PEM system compared with those on the PEM-only substrates. These results suggest that the PEM films can induce NSPC adhesion and differentiation and that an SLB base may enhance neuron differentiation and trigger the formation of functional synapses.
KW - functional neuron
KW - neural stem/progenitor cells (NSPCs)
KW - polyelectrolyte multilayer (PEM) films
KW - supported lipid bilayer (SLB)
KW - synapse-triggering base
UR - http://www.scopus.com/inward/record.url?scp=84906819047&partnerID=8YFLogxK
U2 - 10.1021/am503750w
DO - 10.1021/am503750w
M3 - 文章
C2 - 25111699
AN - SCOPUS:84906819047
SN - 1944-8244
VL - 6
SP - 14439
EP - 14450
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 16
ER -