ATP Mediates NADPH Oxidase/ROS Generation and COX-2/PGE2 Expression in A549 Cells: Role of P2 Receptor-Dependent STAT3 Activation

Shin Ei Cheng, I. Ta Lee, Chih Chung Lin, Wan Ling Wu, Li Der Hsiao, Chuen Mao Yang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

43 Scopus citations

Abstract

Background: Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E2 (PGE2) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE2 release remain unclear. Principal Findings: Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47phox, Jak2, STAT3, and cPLA2 markedly reduced ATPγS-induced COX-2 expression and PGE2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. Significance: Taken together, these results showed that ATPγS induced COX-2 expression and PGE2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

Original languageEnglish
Article numbere54125
JournalPLoS ONE
Volume8
Issue number1
DOIs
StatePublished - 17 01 2013

Fingerprint

Dive into the research topics of 'ATP Mediates NADPH Oxidase/ROS Generation and COX-2/PGE2 Expression in A549 Cells: Role of P2 Receptor-Dependent STAT3 Activation'. Together they form a unique fingerprint.

Cite this