Abstract
Intelligent computer-aided algorithms analyzing photographs of various mouth regions can help in reducing the high subjectivity in human assessment of oral lesions. Very often, in the images, a ruler is placed near a suspected lesion to indicate its location and as a physical size reference. In this paper, we compared two deep-learning networks: ResNeSt and ViT, to automatically identify ruler images. Even though the ImageN et 1K dataset contains a 'ruler' class label, the pre-trained models showed low sensitivity. After fine-tuning with our data, the two networks achieved high performance on our test set as well as a hold-out test set from a different provider. Heatmaps generated using three saliency methods: GradCam and XRAI for ResNeSt model, and Attention Rollout for ViT model, demonstrate the effectiveness of our technique.
Original language | English |
---|---|
Title of host publication | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3218-3221 |
Number of pages | 4 |
ISBN (Electronic) | 9781728127828 |
DOIs | |
State | Published - 2022 |
Externally published | Yes |
Event | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom Duration: 11 07 2022 → 15 07 2022 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2022-July |
ISSN (Print) | 1557-170X |
Conference
Conference | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 11/07/22 → 15/07/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.