Bioengineered Bacteriophage-Like Nanoparticles as RNAi Therapeutics to Enhance Radiotherapy against Glioblastomas

Hao Han Pang, Chiung Yin Huang, Pin Yuan Chen, Nan Si Li, Ying Pei Hsu, Jan Kai Wu, Hsiu Fang Fan, Kuo Chen Wei*, Hung Wei Yang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

10 Scopus citations

Abstract

Since glioblastomas (GBMs) are radioresistant malignancies and most GBM recurrences occur in radiotherapy, increasing the effectiveness of radiotherapy by gene-silencing has recently attracted attention. However, the difficulty in precisely tuning the composition and RNA loading in nanoparticles leads to batch-to-batch variations of the RNA therapeutics, thus significantly restricting their clinical translation. Here, we bioengineer bacteriophage Qβ particles with a designed broccoli light-up three-way junction (b-3WJ) RNA scaffold (contains two siRNA/miRNA sequences and one light-up aptamer) packaging for the silencing of genes in radioresistant GBM cells. The in vitro results demonstrate that the cleavage of de novo designed b-3WJ RNA by Dicer enzyme can be easily monitored in real-time using fluorescence microscopy, and the TrQβ@b-3WJLet-7gsiEGFRsuccessfully knocks down EGFR and IKKα simultaneously and thereby inactivates NF-κB signaling to inhibit DNA repair. Delivery of TrQβ@b-3WJLet-7gsiEGFRthrough convection-enhanced delivery (CED) infusion followed by 2Gy X-ray irradiation demonstrated that the median survival was prolonged to over 60 days compared with the 2Gy X-ray irradiated group (median survival: 31 days). Altogether, the results of this study could be critical for the design of RNAi-based genetic therapeutics, and CED infusion serves as a powerful delivery system for promoting radiotherapy against GBMs without evidence of systemic toxicity.

Original languageEnglish
Pages (from-to)10407-10422
Number of pages16
JournalACS Nano
Volume17
Issue number11
DOIs
StatePublished - 13 06 2023

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society. All rights reserved.

Keywords

  • 3WJ RNAs
  • RNAi therapeutics
  • brain tumors
  • gene silencing
  • radioresistance
  • virus-like particles (VLPs)

Fingerprint

Dive into the research topics of 'Bioengineered Bacteriophage-Like Nanoparticles as RNAi Therapeutics to Enhance Radiotherapy against Glioblastomas'. Together they form a unique fingerprint.

Cite this