Abstract
Mitochondria are believed to be integrators and coordinators of programmed cell death in addition to their respiratory function. Using mitochondrial DNA (mtDNA)-depleted osteosarcoma cells (p0 cells) as a cell model, we investigated the apoptogenic signaling pathway of cadmium (Cd) under a condition of mitochondrial dysfunction. The apoptotic percentage was determined to be around 58.0% after a 24-h exposure to 25 μM Cd using flow cytometry staining with propidium iodine (PI). Pretreatment with Z-VAD-fmk, a broad-spectrum caspase inhibitor, failed to prevent apoptosis following Cd exposure. Moreover, Cd was unable to activate caspase 3 using DEVD-AFC as a substrate, indicating that Cd induced a caspase-independent apoptotic pathway in p0 cells. JC-1 staining demonstrated that mitochondrial membrane depolarization was a prelude to apoptosis. On the other hand, the intracellular calcium concentration increased 12.5-fold after a 2-h exposure to Cd. More importantly, the apoptogenic activity of Cd was almost abolished by ruthenium red, a mitochondrial calcium uniporter blocker. This led us to conclude that mtDNA-depleted cells provide an alternative pathway for Cd to conduct caspase-independent apoptosis through a mitochondria-calcium mechanism.
Original language | English |
---|---|
Pages (from-to) | 497-505 |
Number of pages | 9 |
Journal | Annals of the New York Academy of Sciences |
Volume | 1042 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
Keywords
- Apoptosis
- Cadmium
- Caspase
- Miotochondria