Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology

Chih Hao Chen, Jolene Mei Jun Liu, Chee Kai Chua, Siaw Meng Chou, Victor Bong Hang Shyu, Jyh Ping Chen*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

60 Scopus citations


Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

Original languageEnglish
Pages (from-to)2104-2119
Number of pages16
Issue number3
StatePublished - 2014


  • Cartilage tissue engineering selective laser sintering
  • Chondrocytes
  • Indirect additive manufacturing technology
  • Scaffold
  • Silk fibroin


Dive into the research topics of 'Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology'. Together they form a unique fingerprint.

Cite this