Abstract
High-density GaN nanorods with outstanding crystal quality were grown on c-sapphire substrates by radio-frequency plasma-assisted metalorganic molecular beam epitaxy under catalyst- and template-free growth condition. Morphological and structural characterization of the GaN nanorods was employed by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM). These results indicate that the rod number density can reach 1 × 1010 cm -2 and the nanorods are well-aligned with preferentially oriented in the c-axis direction. Meanwhile, no metallic (Ga) droplet was observed at the end of the rods, which is the intrinsic feature of vapor-liquid-solid method. Nanorods with no traces of any extended defects, as confirmed by TEM, were obtained as well. In addition, optical investigation was carried out by temperature- and power-dependent micro-photoluminescence (μ-PL). The PL peak energies are red-shifted with increasing excitation power, which is attributed to many-body effects of free carriers under high excitation intensity. The growth mechanism is discussed on the basis of the experimental results. Catalyst-free GaN nanorods presented here might have a high potential for applications in nanoscale photonic devices.
Original language | English |
---|---|
Pages (from-to) | 273-276 |
Number of pages | 4 |
Journal | IEEE Transactions on Nanotechnology |
Volume | 5 |
Issue number | 3 |
DOIs | |
State | Published - 05 2006 |
Externally published | Yes |
Keywords
- Catalyst free
- GaN nanorod
- Metalorganic molecular-beam epitaxy
- Nanotechnology