Cell lineage-specific methylome and genome alterations in gout

Chia Chun Tseng, Wei Ting Liao*, Man Chun Wong, Chung Jen Chen, Su Chen Lee, Jeng Hsien Yen, Shun Jen Chang*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

11 Scopus citations

Abstract

In this study, we examined data from 69 gout patients and 1,455 non-gout controls using a MethylationEPIC BeadChip assay and Illumina HiSeq platform to identify lineage-specific epigenetic alterations and associated genetic factors that contributed to gouty inflammation. Cell lineage-specific differentially methylated sites were identified using CellDMC after adjusting for sex, age, alcohol drinking, smoking status, and smoking history (total pack-years). Different cell lineages displayed distinct differential methylation. Ingenuity Pathway Analysis and NetworkAnalyst indicated that many differential methylated sites were associated with interleukin-1β expression in monocytes. On the UCSC Genome Browser and WashU Epigenome Browser, metabolic trait, cis-methylation quantitative trait loci, genetic, and functional annotation analyses identified nine methylation loci located in interleukin-1β-regulating genes (PRKCZ, CIDEC, VDAC1, CPT1A, BIRC2, BRCA1, STK11, and NLRP12) that were associated specifically with gouty inflammation. All nine sites mapped to active regulatory elements in monocytes. MoLoTool and ReMap analyses indicated that the nine methylation loci overlapped with binding sites of several transcription factors that regulated interleukin-1β production and gouty inflammation. Decreases in PRKCZ and STK11 methylation were also associated with higher numbers of first-degree relatives who also had gout. The gouty-inflammation specific methylome and genome alterations could potentially aid in the identification of novel therapeutic targets.

Original languageEnglish
Pages (from-to)3843-3863
Number of pages21
JournalAging
Volume13
Issue number3
DOIs
StatePublished - 15 02 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright: © 2021 Tseng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords

  • gout
  • inflammation
  • interleukin-1β
  • methylation

Fingerprint

Dive into the research topics of 'Cell lineage-specific methylome and genome alterations in gout'. Together they form a unique fingerprint.

Cite this