Cell morphologies, mechanical properties, and fiber orientation of glass fiber-reinforced polyamide composites: Influence of subcritical gas-laden pellet injection molding foaming technology

Huaguang Yang, Allen Jonathan Román, Tzu Chuan Chang, Chenglong Yu, Jing Jiang, Demitri Shotwell, Edward Chen, Tim A. Osswald, Lih Sheng Turng*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

6 Scopus citations

Abstract

Advanced materials and new lightweighting technologies are essential for boosting the fuel economy of modern automobiles while maintaining performance and safety. A novel approach called subcritical gas-laden pellet injection molding foaming technology (SIFT) was performed to produce foamed polyamide/glass fiber (PA/GF) composite. Gas-laden pellets loaded with nitrogen (N2) were produced by introducing sub-critical N2 into PA/GF composite during compounding using a twin-screw extruder equipped with a simple gas injection unit. Compared to the commercial microcellular injection molding (MIM) technologies, gas-laden pellets enable the production of foamed parts with a standard injection molding machine, which is more cost-effective and easier to implement. To the best of our knowledge, this is the first attempt that the SIFT technology is being used for the PA/GF composites for making foamed parts. The tensile strength, fiber orientation, cell morphology, and densities of foamed PA/GF parts were investigated, and the shelf life of N2-laden PA/GF pellets was examined. Results showed that the N2-laden pellets still possessed good foaming ability after one week of storage under ambient atmospheric conditions. One week is a noticeable improvement compared to those N2-laden neat polymer pellets without glass fibers. With this approach, the weight reduction of foamed PA/GF parts was able to reach 12.0 wt. %. Additionally, a nondestructive analysis of the fiber orientation using micro-computed tomography suggested that the MIM and SIFT samples exhibited a less degree of fiber orientation along the flow direction when compared to the solid samples and that the tensile strength of both technologies was very close at a similar weight reduction. Cell size increased and cell density decreased as the shelf life increased. These findings showed that this processing method could act as an alternative to current commercial foam injection molding technology for producing lightweight parts with greater design freedom.

Original languageEnglish
Article number013101
JournalPhysics of Fluids
Volume34
Issue number1
DOIs
StatePublished - 01 01 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 Author(s).

Fingerprint

Dive into the research topics of 'Cell morphologies, mechanical properties, and fiber orientation of glass fiber-reinforced polyamide composites: Influence of subcritical gas-laden pellet injection molding foaming technology'. Together they form a unique fingerprint.

Cite this