TY - JOUR
T1 - Characterization of tolerance induction through prenatal marrow transplantation
T2 - The requirement for a threshold level of chimerism to establish rather than maintain postnatal skin tolerance
AU - Chen, Jeng Chang
AU - Kuo, Ming Ling
AU - Ou, Liang Shiou
AU - Chang, Pei Yeh
AU - Muench, Marcus O.
AU - Shen, Chia Rui
AU - Chang, Hsueh Ling
AU - Yu, Hsiu Yueh
AU - Fu, Ren Huei
PY - 2010
Y1 - 2010
N2 - Hematopoietic chimerism resulting from prenatal marrow transplantation does not consistently result in allotolerance for unidentified causes. In a C57BL/6-into-FVB/N murine model, we transplanted T-cell-depleted adult marrow on gestational day 14 to elucidate the immunological significance of chimerism towards postnatal tolerance. Postnatally, chimerism was examined by flow cytometry, and tolerance by skin transplantation and mixed lymphocyte reaction. Regulatory T cells were quantified by FoxP3 expression. Peripheral chimerism linearly related to thymic chimerism, and predicted the degree of graft acceptance with levels >3% at skin placement, yielding consistent skin tolerance. Low- and high-level chimeras had lower intrathymic CD3high expression than microchimeras or untransplanted mice. Regardless of the skin tolerance status in mixed chimeras, donor-specific alloreactivity by lymphocytes was suppressed but could be partially restored by exogenous interleukin-2. Recipients that lost peripheral chimerism did not accept donor skin unless prior donor skin had engrafted at sufficient chimerism levels, suggesting that complete tolerance can develop as a consequence of chimerism-related immunosuppression of host lymphocytes and the tolerogenic effects of donor skin. Thus, hematopoietic chimerism exerted immunomodulatory effects on the induction phase of allograft tolerance. Once established, skin tolerance did not fade away along with spontaneous regression of peripheral and tissue chimerism, as well as removal of engrafted donor skin. Neither did it break following in vivo depletion of increased regulatory T cells, and subcutaneous interleukin-2 injection beneath the engrafted donor skin. Those observations indicate that the maintenance of skin tolerance is multifaceted, neither solely dependent upon hematopoietic chimerism and engrafted donor skin nor on the effects of regulatory T cells or clonal anergy. We conclude that hematopoietic chimerism generated by in utero hematopoietic stem cell transplantation is critical to establish rather than maintain postnatal skin tolerance. Therefore, the diminution of hematopoietic chimerism below a threshold level does not nullify an existing tolerance state, but lessens the chance of enabling complete tolerance.
AB - Hematopoietic chimerism resulting from prenatal marrow transplantation does not consistently result in allotolerance for unidentified causes. In a C57BL/6-into-FVB/N murine model, we transplanted T-cell-depleted adult marrow on gestational day 14 to elucidate the immunological significance of chimerism towards postnatal tolerance. Postnatally, chimerism was examined by flow cytometry, and tolerance by skin transplantation and mixed lymphocyte reaction. Regulatory T cells were quantified by FoxP3 expression. Peripheral chimerism linearly related to thymic chimerism, and predicted the degree of graft acceptance with levels >3% at skin placement, yielding consistent skin tolerance. Low- and high-level chimeras had lower intrathymic CD3high expression than microchimeras or untransplanted mice. Regardless of the skin tolerance status in mixed chimeras, donor-specific alloreactivity by lymphocytes was suppressed but could be partially restored by exogenous interleukin-2. Recipients that lost peripheral chimerism did not accept donor skin unless prior donor skin had engrafted at sufficient chimerism levels, suggesting that complete tolerance can develop as a consequence of chimerism-related immunosuppression of host lymphocytes and the tolerogenic effects of donor skin. Thus, hematopoietic chimerism exerted immunomodulatory effects on the induction phase of allograft tolerance. Once established, skin tolerance did not fade away along with spontaneous regression of peripheral and tissue chimerism, as well as removal of engrafted donor skin. Neither did it break following in vivo depletion of increased regulatory T cells, and subcutaneous interleukin-2 injection beneath the engrafted donor skin. Those observations indicate that the maintenance of skin tolerance is multifaceted, neither solely dependent upon hematopoietic chimerism and engrafted donor skin nor on the effects of regulatory T cells or clonal anergy. We conclude that hematopoietic chimerism generated by in utero hematopoietic stem cell transplantation is critical to establish rather than maintain postnatal skin tolerance. Therefore, the diminution of hematopoietic chimerism below a threshold level does not nullify an existing tolerance state, but lessens the chance of enabling complete tolerance.
KW - Chimerism
KW - Hematopoietic stem cells
KW - In utero
KW - Marrow transplantation
KW - Transplantation tolerance
UR - http://www.scopus.com/inward/record.url?scp=79951838686&partnerID=8YFLogxK
U2 - 10.3727/096368910X516583
DO - 10.3727/096368910X516583
M3 - 文章
C2 - 20719075
AN - SCOPUS:79951838686
SN - 0963-6897
VL - 19
SP - 1609
EP - 1622
JO - Cell Transplantation
JF - Cell Transplantation
IS - 12
ER -