TY - JOUR
T1 - Chlamydia trachomatis infection increases the expression of inflammatory tumorigenic cytokines and chemokines as well as components of the Toll-like receptor and NF-κB pathways in human prostate epithelial cells
AU - Sellami, Hanen
AU - Said-Sadier, Najwane
AU - Znazen, Abir
AU - Gdoura, Radhouane
AU - Ojcius, David M.
AU - Hammami, Adnene
PY - 2014/8
Y1 - 2014/8
N2 - Inflammation has been reported to play a major role in prostate carcinogenesis. Several bacterial infections can lead to prostate inflammation; however, until now, the precise molecular and cellular mechanisms linking inflammation to carcinogenesis have remained unclear. We therefore investigated the initiation of inflammation induced by Chlamydia trachomatis (C. trachomatis) infection in human prostate epithelial cells using an invitro culture system in which human androgen-independent PC-3 prostate cancer epithelial cells were infected with C.trachomatis serovar L2. The expression levels of VEGF, ICAM-1, IL-6, IL-8, IL-1β, TNFα, CCL5, CCL2 and iNOS inflammation-related genes, as well as genes involved in the Toll-like receptor (TLR) pathway (TLR2, TLR4, CD14 and MyD88), were evaluated at the mRNA level in infected PC-3 cells 24h after infection with C. trachomatis serovar L2. The expression levels of components of the NF-κB pathway (p65 and IκBα) were evaluated at the mRNA level in infected PC-3 cells at different time points (1, 6, 12 and 24h) after infection. The expression levels of inflammation-related genes, components of the Toll-like receptor pathway and genes involved in NF-κB activation were analyzed in infected and uninfected cells using semi-quantitative RT-PCR. We detected a significant increase (p<0.001) in inflammation-related cytokines in infected PC-3 cells. During infection, PC-3 cells elicited a proinflammatory response, as shown by NF-κB activation, TLR2 and TLR4 upregulation and the increased expression of inflammation-related genes. Furthermore, we observed significant upregulation of the adhesion molecules ICAM-1 and VEGF, which are two biomarkers correlated with tumor progression and immune system evasion. The present study suggests that human prostate cancer epithelial cells are susceptible to C.trachomatis infection and upregulate proinflammatory markers during infection.
AB - Inflammation has been reported to play a major role in prostate carcinogenesis. Several bacterial infections can lead to prostate inflammation; however, until now, the precise molecular and cellular mechanisms linking inflammation to carcinogenesis have remained unclear. We therefore investigated the initiation of inflammation induced by Chlamydia trachomatis (C. trachomatis) infection in human prostate epithelial cells using an invitro culture system in which human androgen-independent PC-3 prostate cancer epithelial cells were infected with C.trachomatis serovar L2. The expression levels of VEGF, ICAM-1, IL-6, IL-8, IL-1β, TNFα, CCL5, CCL2 and iNOS inflammation-related genes, as well as genes involved in the Toll-like receptor (TLR) pathway (TLR2, TLR4, CD14 and MyD88), were evaluated at the mRNA level in infected PC-3 cells 24h after infection with C. trachomatis serovar L2. The expression levels of components of the NF-κB pathway (p65 and IκBα) were evaluated at the mRNA level in infected PC-3 cells at different time points (1, 6, 12 and 24h) after infection. The expression levels of inflammation-related genes, components of the Toll-like receptor pathway and genes involved in NF-κB activation were analyzed in infected and uninfected cells using semi-quantitative RT-PCR. We detected a significant increase (p<0.001) in inflammation-related cytokines in infected PC-3 cells. During infection, PC-3 cells elicited a proinflammatory response, as shown by NF-κB activation, TLR2 and TLR4 upregulation and the increased expression of inflammation-related genes. Furthermore, we observed significant upregulation of the adhesion molecules ICAM-1 and VEGF, which are two biomarkers correlated with tumor progression and immune system evasion. The present study suggests that human prostate cancer epithelial cells are susceptible to C.trachomatis infection and upregulate proinflammatory markers during infection.
KW - Chemokines
KW - Chlamydia trachomatis
KW - Cytokines
KW - Inflammation
KW - Prostate cancer epithelial cells
UR - http://www.scopus.com/inward/record.url?scp=84901280717&partnerID=8YFLogxK
U2 - 10.1016/j.mcp.2014.01.006
DO - 10.1016/j.mcp.2014.01.006
M3 - 文章
C2 - 24613856
AN - SCOPUS:84901280717
SN - 0890-8508
VL - 28
SP - 147
EP - 154
JO - Molecular and Cellular Probes
JF - Molecular and Cellular Probes
IS - 4
ER -