Abstract
This study tested whether circulatory endothelial progenitor cells (EPCs) derived from peripheral arterial occlusive disease (PAOD) patients after receiving combined autologous CD34+ cell and hyperbaric oxygen (HBO) therapy (defined as rejuvenated EPCs) would salvage nude mouse limbs against critical limb ischemia (CLI). Adult-male nude mice (n = 40) were equally categorized into group 1 (sham-operated control), group 2 (CLI), group 3 (CLI-EPCs (6 × 105) derived from PAOD patient’s circulatory blood prior to CD34+ cell and HBO treatment (EPCPr-T ) by intramuscular injection at 3 h after CLI induction) and group 4 (CLI-EPCs (6 × 105) derived from PAOD patient’s circulatory blood after CD34+ cell and HBO treatment (EPCAf-T ) by the identical injection method). By 2, 7 and 14 days after the CLI procedure, the ischemic to normal blood flow (INBF) ratio was highest in group 1, lowest in group 2 and significantly lower in group 4 than in group 3 (p < 0.0001). The protein levels of endothelial functional integrity (CD31/von Willebrand factor (vWF)/endothelial nitric-oxide synthase (eNOS)) expressed a similar pattern to that of INBF. In contrast, apoptotic/mitochondrial-damaged (mitochondrial-Bax/caspase-3/PARP/cytosolic-cytochrome-C) biomarkers and fibrosis (Smad3/TGF-ß) exhibited an opposite pattern, whereas the protein expressions of anti-fibrosis (Smad1/5 and BMP-2) and mitochondrial integrity (mitochondrial-cytochrome-C) showed an identical pattern of INBF (all p < 0.0001). The protein expressions of angiogenesis biomarkers (VEGF/SDF-1α/HIF-1α) were progressively increased from groups 1 to 3 (all p < 0.0010). The number of small vessels and endothelial cell surface markers (CD31+/vWF+ ) in the CLI area displayed an identical pattern of INBF (all p < 0.0001). CLI automatic amputation was higher in group 2 than in other groups (all p < 0.001). In conclusion, EPCs from HBO-C34+ cell therapy significantly restored the blood flow and salvaged the CLI in nude mice.
Original language | English |
---|---|
Article number | 7887 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | International Journal of Molecular Sciences |
Volume | 21 |
Issue number | 21 |
DOIs | |
State | Published - 01 11 2020 |
Bibliographical note
Publisher Copyright:© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Angiogenesis
- Critical limb ischemia
- Endothelial progenitor cells
- Hyperbaric oxygen therapy
- Nude mice