Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan

Ai Ling Hsu, Chun Yu Wu, Hei Yin Hydra Ng, Chun Hsiang Chuang, Chih Mao Huang, Changwei W. Wu*, Yi Ping Chao*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

Abstract

Background and Objective: Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived connectivity possesses the potential to differentiate brain functions between mindfulness naïve and mindfulness experienced, where such quantitative differentiation could benefit telediagnosis for mental health. However, there is no prior guidance in model selection targeting on the mindfulness-experience prediction. Here we hypothesized that the EEG effective connectivity could reach a good prediction performance in mindfulness experiences with brain interpretability. Methods: We aimed at probing direct Directed Transfer Function (dDTF) to classify the participants’ history of mindfulness-based stress reduction (MBSR), and aimed at optimizing the prediction accuracy by comparing multiple machine learning (ML) algorithms. Targeting the gamma-band effective connectivity, we evaluated the EEG-based prediction of the mindfulness experiences across 7 machine learning (ML) algorithms and 3 sessions (i.e., resting, focus-breathing, and body-scan). Results: The support vector machine and naïve Bayes classifiers exhibited significant accuracies above the chance level across all three sessions, and the decision tree algorithm reached the highest prediction accuracy of 91.7 % with the resting state, compared to the classification accuracies with the other two mindful states. We further conducted the analysis on essential EEG channels to preserve the classification accuracy, revealing that preserving just four channels (F7, F8, T7, and P7) out of 19 yielded the accuracy of 83.3 %. Delving into the contribution of connectivity features, specific connectivity features predominantly located in the frontal lobe contributed more to classifier construction, which aligned well with the existing mindfulness literature. Conclusion: In the present study, we initiated a milestone of developing an EEG-based classifier to detect a person's mindfulness experience objectively. The prediction accuracy of the decision tree was optimal to differentiate the mindfulness experiences using the local resting-state EEG data. The suggested algorithm and key channels on the mindfulness-experience prediction may provide guidance for predicting mindfulness experiences using the EEG-based classification embedded in future wearable neurofeedback systems or plausible digital therapeutics.

Original languageEnglish
Article number108446
JournalComputer Methods and Programs in Biomedicine
Volume257
DOIs
StatePublished - 12 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors

Keywords

  • Decision tree
  • Effective connectivity
  • Electroencephalography (EEG)
  • Machine learning
  • Mindfulness
  • Mindfulness-based stress reduction (MBSR)

Fingerprint

Dive into the research topics of 'Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan'. Together they form a unique fingerprint.

Cite this