Abstract
T cell differentiation into distinct functional effector and inhibitory subsets is regulated, in part, by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between regulatory T cell (T reg) and TH17 differentiation. HIF-1 enhances T H17 development through direct transcriptional activation of RORγt and via tertiary complex formation with RORγt and p300 recruitment to the IL-17 promoter, thereby regulating TH17 signature genes. Concurrently, HIF-1 attenuates Treg development by binding Foxp3 and targeting it for proteasomal degradation. Importantly, this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α-deficient T cells are resistant to induction of T H17-dependent experimental autoimmune encephalitis associated with diminished TH17 and increased Treg cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.
Original language | English |
---|---|
Pages (from-to) | 772-784 |
Number of pages | 13 |
Journal | Cell |
Volume | 146 |
Issue number | 5 |
DOIs | |
State | Published - 02 09 2011 |