TY - JOUR
T1 - Cordycepin prevents and ameliorates experimental autoimmune encephalomyelitis by inhibiting leukocyte infiltration and reducing neuroinflammation
AU - Song, Ying Chyi
AU - Liu, Chuan Teng
AU - Lee, Hui Ju
AU - Yen, Hung Rong
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/3
Y1 - 2022/3
N2 - Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Cordycepin (3′-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. We investigated that cordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NFκB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In experimental autoimmune encephalomyelitis (EAE) model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-γ, IL-6, TNF-α, and IL-17), and attenuated disease symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the disease severity in the early disease onset stage and late disease progression stage. Our study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.
AB - Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Cordycepin (3′-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. We investigated that cordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NFκB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In experimental autoimmune encephalomyelitis (EAE) model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-γ, IL-6, TNF-α, and IL-17), and attenuated disease symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the disease severity in the early disease onset stage and late disease progression stage. Our study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.
KW - Adhesion molecules
KW - Chemotaxis
KW - Cordycepin
KW - Dendritic cells
KW - Multiple sclerosis
KW - Neuroinflammation
UR - https://www.scopus.com/pages/publications/85123250585
U2 - 10.1016/j.bcp.2022.114918
DO - 10.1016/j.bcp.2022.114918
M3 - 文章
C2 - 35063441
AN - SCOPUS:85123250585
SN - 0006-2952
VL - 197
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
M1 - 114918
ER -