Cytokine interactions in mesenchymal stem cells from cord blood

Chi Hsien Liu*, Shiaw Min Hwang

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

202 Scopus citations

Abstract

We used cytokine protein array to analyze the expression of cytokines from human cord blood-derived mesenchymal stem cells (CB-MSCs). Several cytokines, interleukins (IL), and growth factors, including ENA-78, GM-CSF, GRO, IL-1β, IL-6, IL-8, MCP-1, OSM, VEGF, FGF-4, FGF-7, FGF-9, GCP-2, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IP-10, LIF, MIF, MIP-3α, osteoprotegerin, PARC, PIGF, TGF-β2, TGF-β3, TIMP-1, as well as TIMP-2, were secreted by CB-MSCs, while IL-4, IL-5, IL-7, IL-13, TGF-β1, TNF-α, and TNF-β were not expressed under normal growth conditions. IL-6, IL-8, TIMP-1, and TIMP-2 were the most abundant interleukins expressed by CB-MSCs. A set of growth factors were selected to evaluate their stimulatory effects on the IL6 secretion for CB-MSCs. IL-1β was the most important factor inducing CB-MSC to secret IL-6. The mechanism by which IL-1β promoted IL-6 expression in CB-MSCs was studied. By using various inhibitors of signal transduction, we found that activation of p38 mitogen-activated protein kinases (MAPK) and MAPK kinase (MEK) is essential in the IL-1β stimulated signaling cascade which leads to the increase in IL-6 synthesis. Additionally, continuous supplement of IL-1β in the CB-MSCs culture will facilitate adipogenic maturation of CB-MSCs as evidenced by the presence of oil drops in the CB-MSCs and secretion of leptin, a molecule marker of adipocytes. These results strongly suggest that cytokine induction and signal transduction are important for the differentiation of CB-MSCs.

Original languageEnglish
Pages (from-to)270-279
Number of pages10
JournalCytokine
Volume32
Issue number6
DOIs
StatePublished - 21 12 2005

Keywords

  • Cord blood
  • Cytokine
  • Interleukin-1β
  • Interleukin-6
  • Mesenchymal stem cell

Fingerprint

Dive into the research topics of 'Cytokine interactions in mesenchymal stem cells from cord blood'. Together they form a unique fingerprint.

Cite this