TY - JOUR
T1 - Detection threshold for inspiratory resistive loads and respiratory-related evoked potentials
AU - Davenport, Paul W.
AU - Chan, Pei Ying Sarah
AU - Zhang, Weirong
AU - Chou, Yang Ling
PY - 2007/1
Y1 - 2007/1
N2 - The relationship between detection threshold of inspiratory resistive loads and the peaks of the respiratory-related evoked potential (RREP) is unknown. It was hypothesized that the short-latency and long-latency peaks of the RREP would only be elicited by inspiratory loads that exceeded the detection threshold. The detection threshold for inspiratory resistive loads was measured in healthy subjects with inspiratory-interruption or onset load presentations. In a separate protocol, the RREPs were recorded with resistive loads that spanned the detection threshold. The loads were presented in stimulus attend and ignore sessions. Onset and interruption load presentations had the same resistive load detection threshold. The P1, Nf, and N 1 peaks of the RREP were observed with loads that exceeded the detection threshold in both attend and ignore conditions. The P300 was present with loads that exceeded the detection threshold only in the attend condition. No RREP components were elicited with subthreshold loads. The P 1, Nf, and P300 amplitudes varied with resistive load magnitude. The results support the hypothesis that there is a resistive load threshold for eliciting the RREPs. The amplitude of the RREP peaks vary as a function of load magnitude. The cognitive P300 RREP peak is present only for detectable loads and when the subject attends to the stimulus. The absence of the RREP with loads below the detection threshold and the presence of the RREP elicited by suprathreshold loads are consistent with the gating of these neural measures of respiratory mechanosensory information processing.
AB - The relationship between detection threshold of inspiratory resistive loads and the peaks of the respiratory-related evoked potential (RREP) is unknown. It was hypothesized that the short-latency and long-latency peaks of the RREP would only be elicited by inspiratory loads that exceeded the detection threshold. The detection threshold for inspiratory resistive loads was measured in healthy subjects with inspiratory-interruption or onset load presentations. In a separate protocol, the RREPs were recorded with resistive loads that spanned the detection threshold. The loads were presented in stimulus attend and ignore sessions. Onset and interruption load presentations had the same resistive load detection threshold. The P1, Nf, and N 1 peaks of the RREP were observed with loads that exceeded the detection threshold in both attend and ignore conditions. The P300 was present with loads that exceeded the detection threshold only in the attend condition. No RREP components were elicited with subthreshold loads. The P 1, Nf, and P300 amplitudes varied with resistive load magnitude. The results support the hypothesis that there is a resistive load threshold for eliciting the RREPs. The amplitude of the RREP peaks vary as a function of load magnitude. The cognitive P300 RREP peak is present only for detectable loads and when the subject attends to the stimulus. The absence of the RREP with loads below the detection threshold and the presence of the RREP elicited by suprathreshold loads are consistent with the gating of these neural measures of respiratory mechanosensory information processing.
KW - Control of breathing
KW - Load detection
KW - Respiratory sensation
KW - Somatosensory cortex
UR - https://www.scopus.com/pages/publications/33846160972
U2 - 10.1152/japplphysiol.01436.2005
DO - 10.1152/japplphysiol.01436.2005
M3 - 文章
C2 - 17008431
AN - SCOPUS:33846160972
SN - 8750-7587
VL - 102
SP - 276
EP - 285
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 1
ER -