Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor

Ja An Annie Ho, Heng Chia Chang, Neng Yao Shih, Li Chen Wu, Ying Feng Chang, Chii Chang Chen, Chien Chou

Research output: Contribution to journalJournal Article peer-review

179 Scopus citations


The development of rapid and sensitive methods for the detection of immunogenic tumor-associated antigen is important not only for understanding their roles in cancer immunology but also for the development of clinical diagnostics. α-Enolase (ENO1), a p48 molecule, is widely distributed in a variety of tissues, whereas γ-enolase (ENO2) and β-enolase (ENO3) are found exclusively in neuron/neuroendocrine and muscle tissues, respectively. Because ENO1 has been correlated with small cell lung cancer, nonsmall cell lung cancer, and head and neck cancer, it can be used as a potential diagnostic marker for lung cancer. In this study, we developed a simple, yet novel and sensitive, electrochemical sandwich immunosensor for the detection of ENO1; it operates through physisorption of anti-ENO1 monoclonal antibody on polyethylene glycol-modified disposable screen-printed electrode as the detection platform, with polyclonal secondary anti-ENO1-tagged, gold nanoparticle (AuNP) congregates as electrochemical signal probes. The immunorecognition of the sample ENO1 by the congregated AuNP@antibody occurred on the surface of the electrodes; the electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1 M HCl at 1.2 V for 120 s, followed by the reduction of AuCl4- in square wave voltammetry (SWV) mode. The resulting sigmoidally shaped dose-response curves possessed a linear dynamic working range from 10-8 to 10-12 g/mL. This AuNP congregate-based assay provides an amplification approach for detecting ENO1 at trace levels, leading to a detection limit as low as 11.9 fg (equivalent to 5 μL of a 2.38 pg/mL solution).

Original languageEnglish
Pages (from-to)5944-5950
Number of pages7
JournalAnalytical Chemistry
Issue number14
StatePublished - 15 07 2010
Externally publishedYes


Dive into the research topics of 'Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor'. Together they form a unique fingerprint.

Cite this