Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection

Tsung Liang Chuang, Chia Chen Chang, Yu Chu-Su, Shih Chung Wei, Xi Hong Zhao, Po Ren Hsueh, Chii Wann Lin*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

36 Scopus citations

Abstract

ELISA and ELISPOT methods are utilized for interferon-gamma (IFN-γ) release assays (IGRAs) to detect the IFN-γ secreted by T lymphocytes. However, the multi-step protocols of the assays are still performed with laboratory instruments and operated by well-trained people. Here, we report a membrane-based microfluidic device integrated with a surface plasmon resonance (SPR) sensor to realize an easy-to-use and cost effective multi-step quantitative analysis. To conduct the SPR measurements, we utilized a membrane-based SPR sensing device in which a rayon membrane was located 300 μm under the absorbent pad. The basic equation covering this type of transport is based on Darcy's law. Furthermore, the concentration of streptavidin delivered from a sucrose-treated glass pad placed alongside the rayon membrane was controlled in a narrow range (0.81 μM ± 6%). Finally, the unbound molecules were removed by a washing buffer that was pre-packed in the reservoir of the chip. Using a bi-functional, hairpin-shaped aptamer as the sensing probe, we specifically detected the IFN-γ and amplified the signal by binding the streptavidin. A high correlation coefficient (R2 = 0.995) was obtained, in the range from 0.01 to 100 nM. A detection limit of 10 pM was achieved within 30 min. Thus, the SPR assay protocols for IFN-γ detection could be performed using this simple device without an additional pumping system.

Original languageEnglish
Pages (from-to)2968-2977
Number of pages10
JournalLab on a Chip
Volume14
Issue number16
DOIs
StatePublished - 21 08 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection'. Together they form a unique fingerprint.

Cite this