Driver assistance system for lane detection and vehicle recognition with night vision

Chun Che Wang*, Shih Shinh Huang, Li Chen Fu, Pei Yung Hsiao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

85 Scopus citations

Abstract

The objective of this research is to develop a vision-based driver assistance system to enhance the driver's safety in the nighttime. The proposed system performs both lane detection and vehicle recognition. In lane detection, three features including lane markers, brightness, slenderness and proximity are applied to detect the positions of lane markers in the image. On the other hand, vehicle recognition is achieved by using an evident feature which are extracted through three four steps: taillight standing-out process, adaptive thresholding, centroid detection, and taillight pairing algorithm. Besides, an automatic method is also provided to calculate the tilt and the pan of the camera by using the position of vanishing point which is detected in the image by applying Canny edge detection, Hough transform, major straight line extraction and vanishing point estimation. Experimental results for thousands of images are provided to demonstrate the effectiveness of the proposed approach in the nighttime. The lane detection rate is nearly 99%, and the vehicle recognition rate is about 91%. Furthermore, our system can process the image in almost real time.

Original languageEnglish
Title of host publication2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
PublisherIEEE Computer Society
Pages3530-3535
Number of pages6
ISBN (Print)0780389123, 9780780389120
DOIs
StatePublished - 2005

Publication series

Name2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

Keywords

  • Driver assistance system
  • Lane detection
  • Night vision
  • Vanishing point detection
  • Vehicle recognition

Fingerprint

Dive into the research topics of 'Driver assistance system for lane detection and vehicle recognition with night vision'. Together they form a unique fingerprint.

Cite this