Abstract
Background: A previous study on a murine astrocytoma cell-line ALTS1C1 showed a highly invasive pattern similar to clinical anaplastic astrocytoma in vivo. This cell-line also expressed a high level of matrix metalloproteinase 2 (MMP2). This study aimed to verify the role of MMP2 in brain tumour progression. Methods: ALTS1C1 and MMP2 knockdown (MMP2kd) cells were inoculated intracranially, and tumour microenvironment was assessed by immunohistochemistry staining. Results: MMP2 expression was co-localised with CD31-positive cells at invading the tumour front and correlated with an invasive marker GLUT-1. The suppression of MMP2 expression prolonged the survival of tumour-bearing mice associated with tumours having smoother tumour margins, decreased Ki67-proliferating index, and down-regulated GLUT-1 antigen. Although the reduction of MMP2 expression did not alter the vessel density in comparison to parental ALTS1C1 tumours, vessels in MMP2kd tumours were less functional, as evidenced by the low ratio of pericyte coverage and reduction in Hoechst33342 dye perfusion. Conclusions: This study illustrated that tumour-derived MMP2 has at least two roles in tumour malignancy; to enhance tumour invasiveness by degrading the extracellular matrix and to enhance tumour growth by promoting vessel maturation and function.
Original language | English |
---|---|
Pages (from-to) | 1828-1836 |
Number of pages | 9 |
Journal | British Journal of Cancer |
Volume | 117 |
Issue number | 12 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© The Author(s) named above 2017.
Keywords
- Brain tumour
- Gene therapy
- Glucose transporter-1
- Matrix metalloproteinase 2
- Tumour invasion
- Vessel maturation