TY - JOUR
T1 - Effect of pre-diabetes on future risk of stroke
T2 - Meta-analysis
AU - Lee, Meng
AU - Saver, Jeffrey L.
AU - Hong, Keun Sik
AU - Song, Sarah
AU - Chang, Kuo Hsuan
AU - Ovbiagele, Bruce
PY - 2012/6/16
Y1 - 2012/6/16
N2 - Objectives: To assess the association between pre-diabetes and risk of stroke, and to evaluate whether this relation varies by diagnostic criteria for pre-diabetes. Design: Systematic review and meta-analysis of prospective studies. Data sources A search of Medline, Embase, and the Cochrane Library (1947 to 16 July 2011) was supplemented by manual searches of bibliographies of key retrieved articles and relevant reviews. Selection criteria: Prospective cohort studies that reported multivariate adjusted relative risks and corresponding 95% confidence intervals for stroke with respect to baseline pre-diabetes were included. Data extraction: Two independent reviewers extracted data on pre-diabetes status at baseline, risk estimates of stroke, study quality, and methods used to assess pre-diabetes and stroke. Relative risks were pooled using random effects models when appropriate. Associations were tested in subgroups representing different characteristics of participants and studies. Publication bias was evaluated with funnel plots. Results: The search yielded 15 prospective cohort studies including 760 925 participants. In 8 studies analysing pre-diabetes defined as fasting glucose 100-125 mg/dL (5.6-6.9 mmol/L), the random effects summary estimate did not show an increased risk of stroke after adjustment for established cardiovascular risk factors (1.08, 95% confidence interval 0.94 to 1.23; P=0.26). In 5 studies analysing pre-diabetes defined as fasting glucose 110-125 mg/dL (6.1-6.9 mmol/L), the random effects summary estimate showed an increased risk of stroke after adjustment for established cardiovascular risk factors (1.21, 1.02 to 1.44; P=0.03). In 8 studies with information about impaired glucose tolerance or combined impaired glucose tolerance and impaired fasting glucose, the random effects summary estimate showed an increased risk of stroke after adjustment for established cardiovascular risk factors (1.26, 1.10 to 1.43; P<0.001). When studies that might have enrolled patients with undiagnosed diabetes were excluded, only impaired glucose tolerance or a combination of impaired fasting glucose and impaired glucose tolerance independently raised the future risk of stroke (1.20, 1.07 to 1.35; P=0.002). Conclusion: Pre-diabetes, defined as impaired glucose tolerance or a combination of impaired fasting glucose and impaired glucose tolerance, may be associated with a higher future risk of stroke, but the relative risks are modest and may reflect underlying confounding.
AB - Objectives: To assess the association between pre-diabetes and risk of stroke, and to evaluate whether this relation varies by diagnostic criteria for pre-diabetes. Design: Systematic review and meta-analysis of prospective studies. Data sources A search of Medline, Embase, and the Cochrane Library (1947 to 16 July 2011) was supplemented by manual searches of bibliographies of key retrieved articles and relevant reviews. Selection criteria: Prospective cohort studies that reported multivariate adjusted relative risks and corresponding 95% confidence intervals for stroke with respect to baseline pre-diabetes were included. Data extraction: Two independent reviewers extracted data on pre-diabetes status at baseline, risk estimates of stroke, study quality, and methods used to assess pre-diabetes and stroke. Relative risks were pooled using random effects models when appropriate. Associations were tested in subgroups representing different characteristics of participants and studies. Publication bias was evaluated with funnel plots. Results: The search yielded 15 prospective cohort studies including 760 925 participants. In 8 studies analysing pre-diabetes defined as fasting glucose 100-125 mg/dL (5.6-6.9 mmol/L), the random effects summary estimate did not show an increased risk of stroke after adjustment for established cardiovascular risk factors (1.08, 95% confidence interval 0.94 to 1.23; P=0.26). In 5 studies analysing pre-diabetes defined as fasting glucose 110-125 mg/dL (6.1-6.9 mmol/L), the random effects summary estimate showed an increased risk of stroke after adjustment for established cardiovascular risk factors (1.21, 1.02 to 1.44; P=0.03). In 8 studies with information about impaired glucose tolerance or combined impaired glucose tolerance and impaired fasting glucose, the random effects summary estimate showed an increased risk of stroke after adjustment for established cardiovascular risk factors (1.26, 1.10 to 1.43; P<0.001). When studies that might have enrolled patients with undiagnosed diabetes were excluded, only impaired glucose tolerance or a combination of impaired fasting glucose and impaired glucose tolerance independently raised the future risk of stroke (1.20, 1.07 to 1.35; P=0.002). Conclusion: Pre-diabetes, defined as impaired glucose tolerance or a combination of impaired fasting glucose and impaired glucose tolerance, may be associated with a higher future risk of stroke, but the relative risks are modest and may reflect underlying confounding.
UR - http://www.scopus.com/inward/record.url?scp=84862507629&partnerID=8YFLogxK
U2 - 10.1136/bmj.e3564
DO - 10.1136/bmj.e3564
M3 - 文章
C2 - 22677795
AN - SCOPUS:84862507629
SN - 1756-1833
VL - 344
JO - BMJ (Online)
JF - BMJ (Online)
IS - 7861
M1 - e3564
ER -