Abstract
In this article, metalorganic chemical vapor deposition (MOCVD)-grown InGaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with Al 0.03Ga0.97N and Al0.03Ga0.97N/ In0.01Ga0.99N superlattices-barrier layers on c-plane sapphire were studied for the influence of the strain-compensated barrier on the optical properties of the LEDs. High-resolution X-ray diffraction (HRXRD) analysis shows that the LEDs with a strain-compensated superlattice barrier (SC-SLB) have better interface quality than those using AlGaN. This difference in quality may result from the alleviation of strain relaxation in superlattice layers to improve the crystalline perfection of the epitaxial structures. It was also found that the degree of the exciton localization effect rises considerably as InGaN grows directly on the AlGaN barrier layers. However, the increase in the strength of the polarization fields within the MQWs (as evaluated from bias-dependent photoluminescence (PL) measurement) could reduce the radiative efficiency of the LEDs and shift their PL peaks toward long wavelengths. With suitable control of crystalline quality and the reduced quantum-confined Stark effect in the MQWs, the SC-SLB LEDs operating at 150-mA-current show a 22.3% increase in light output power as compared to their conventional counterparts.
Original language | English |
---|---|
Pages (from-to) | 319-323 |
Number of pages | 5 |
Journal | Applied Physics A: Materials Science and Processing |
Volume | 104 |
Issue number | 1 |
DOIs | |
State | Published - 07 2011 |