Abstract
Swimming is important for promoting and maintaining health, as it can increase the efficiency of the cardiovascular system and decrease the occurrence of cardiovascular diseases. The objective of the present study was to examine whether swimming training could decrease myocardial injury in rats caused by myocardial isch-emia/reperfusion (I/R). Sprague-Dawley rats were randomized into four groups, namely the Sham, coronary artery occlusion, swimming training and ischemic preconditioning (IPC) groups. Myocardial I/R was induced in anesthetized male Sprague-Dawley rats by a 40-min occlusion followed by a 3-h reperfusion of the left anterior descending coronary artery. The rats were sacrificed after surgery and their hearts were examined. The results demonstrated that the number of TUNEL-positive nuclei and degree of caspase-3 activation were both significantly increased in the myocardium following myocardial I/R in rats, indicating increased cardiomyocyte apoptosis. On the other hand, swimming training decreased the serum levels of creatine phosphokinase, lactate dehydroge-nase and cardiac troponin I, and was associated with reduced histological damage and myocardial infarct size. Furthermore, swimming training also reduced TNF-α levels, caspase-3 activation and enhanced Bcl-2 activation, which decreased the number of apoptotic cells in the myocardium. The findings of the present study showed that swimming training and IPC could similarly decrease myocardial injury following myocardial I/R, and may therefore be used as exercise training to effectively prevent myocardial injury.
Original language | English |
---|---|
Article number | 19 |
Journal | Biomedical Reports |
Volume | 16 |
Issue number | 3 |
DOIs | |
State | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022, Spandidos Publications. All rights reserved.
Keywords
- apoptosis
- coronary artery occlusion
- ischemic precondition
- myocardial ischemia-reperfusion
- swimming training