Abstract
Iron oxide-based magnetic resonance imaging (MRI) contrast agents have negative contrast limitations in cancer diagnosis. Gadolinium (Gd)-based contrast agents show toxicity. To overcome these limitations, Gd-doped ferrite (Gd:Fe3O4 (GdIO) nanoparticles (NPs) were synthesized as T1-T2 dual-modal contrast agents for MRI-traced drug delivery. A theranostics GdIO encapsulated in a Generation 4.5 PAMAM dendrimer (G4.5-GdIO) was developed by alkaline coprecipitation. The drug-loading efficiency of the NPs was ∼24%. In the presence of a low-frequency alternating magnetic field (LFAMF), a maximum cumulative doxorubicin (DOX) release of ∼77.47% was achieved in a mildly acidic (pH = 5.0) simulated endosomal microenvironment. Relaxometric measurements indicated superior r1 (5.19 mM−1s−1) and r2 (26.13 mM−1s−1) for G4.5-GdIO relative to commercially available Gd-DTPA. Thus, G4.5-GdIO is promising as an alternative noninvasive MRI-traced cancer drug delivery system.
Original language | English |
---|---|
Article number | 110531 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 184 |
DOIs | |
State | Published - 01 12 2019 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier B.V.
Keywords
- Cancer
- Encapsulation
- Gadolinium ferrite
- Magnetic field
- Poly(amidoamine)
- Theranostics