Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays

Fang I. Lai, Jui Fu Yang, Wei Xiang Liao, Shou Yi Kuo*

*Corresponding author for this work

Research output: Contribution to journalJournal Article peer-review

10 Scopus citations

Abstract

This paper presents the use of nanorods of different sizes, deposited from a chemical solution, as an antireflection layer in copper-zinc-tin selenide (CZTSe) solar cells. With the aid of the nanorods, the surface reflection of the CZTSe solar cells was reduced from 7.76% to 2.97%, and a cell efficiency of 14% was obtained as a result. Omni-directional anti-reflection was verified by the angle-dependent reflection measurements. The nanorod arrays also provided the CZTSe solar cells with a hydrophobic surface, allowing it to exhibit high resistance against humidity during weatherability tests. This shows that the surface passivation brought by the nanorod layer at the surface could effectively extend the lifetime of the CZTSe solar cells. The rate of efficiency decay of the CZTSe solar cells was reduced by 46.85% from that of the device without a nanorod array at the surface, indicating that this surface layer not only provided effective resistance against reflection at the device surface, but also served as a passivation layer and humidity-resistant surface-protection layer.

Original languageEnglish
Article number14927
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - 01 12 2017

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

Fingerprint

Dive into the research topics of 'Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays'. Together they form a unique fingerprint.

Cite this