TY - JOUR
T1 - Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites
AU - Nguyen, Chi Hieu
AU - Tran, Mai Lien
AU - Tran, Thi Tuong Van
AU - Juang, Ruey Shin
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - In this study, the nanostructured TiO2/ZnO/reduced graphene oxide (TZR) composites were fabricated by a facile hydrothermal process. The morphology, fine structure, optical and photoelectrochemical properties of the prepared samples were comprehensively examined. The removal of methylene blue, rhodamine B, and methyl orange in water under UV/simulated solar illumination was then studied to evaluate the photocatalytic performance of these composites. The synergism of ternary TZR composites exhibited greater photocatalytic activity than TiO2, ZnO, and TiO2/ZnO. The highest degradation and mineralization reached 99.6% and 59.0% for methylene blue over TZR, respectively, after 120-min UV irradiation. Similarly, these efficiencies also achieved 99.2% and 48.0% for rhodamine B and 99.4% and 44.2% for methyl orange after 180-min UV-C exposure. Under simulated solar irradiation, the degradation of three dyes over TZR5 (TiO2/ZnO/5 wt% GO) was also more effective than that over P25 and TiO2/ZnO. Finally, the mechanisms and pathways for dye degradation by UV photocatalysis over TZR composite were proposed.
AB - In this study, the nanostructured TiO2/ZnO/reduced graphene oxide (TZR) composites were fabricated by a facile hydrothermal process. The morphology, fine structure, optical and photoelectrochemical properties of the prepared samples were comprehensively examined. The removal of methylene blue, rhodamine B, and methyl orange in water under UV/simulated solar illumination was then studied to evaluate the photocatalytic performance of these composites. The synergism of ternary TZR composites exhibited greater photocatalytic activity than TiO2, ZnO, and TiO2/ZnO. The highest degradation and mineralization reached 99.6% and 59.0% for methylene blue over TZR, respectively, after 120-min UV irradiation. Similarly, these efficiencies also achieved 99.2% and 48.0% for rhodamine B and 99.4% and 44.2% for methyl orange after 180-min UV-C exposure. Under simulated solar irradiation, the degradation of three dyes over TZR5 (TiO2/ZnO/5 wt% GO) was also more effective than that over P25 and TiO2/ZnO. Finally, the mechanisms and pathways for dye degradation by UV photocatalysis over TZR composite were proposed.
KW - Degradation mechanism
KW - Dye removal
KW - Pathways
KW - Photocatalysis
KW - TiO/ZnO/rGO composite
UR - http://www.scopus.com/inward/record.url?scp=85071073676&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2019.115962
DO - 10.1016/j.seppur.2019.115962
M3 - 文章
AN - SCOPUS:85071073676
SN - 1383-5866
VL - 232
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 115962
ER -