Abstract
Background. The epithelial sodium channel (ENaC) is a complex, and the αENaC subunit has a crucial role in sodium uptake induced by aldosterone in the distal nephron. Although experimental animal models of diabetes have demonstrated up-regulation of αENaC expression in renal cortical collecting duct (CCD) cells, the molecular mechanism remains unclear. Advanced glycation end products (AGEs) are by-products of long-term hyperglycaemia and comprise a significant pathogenic factor in diabetic nephropathy. We hypothesize that AGEs play a role in regulating αENaC gene expression. Methods. Mouse CCD cells (mpkCCDcl4) were cultured with AGE to determine the effects of AGE on αENaC expression and sodium uptake. Gene expressions of ENaC were measured by real-time PCR and sodium uptake was measured with fluorescent dye as a sodium indicator (SBFI-AM). This study analysed mitogen-activated protein kinases signalling pathways by western blotting. Cells co-transfected with plasmids of the αENaC promoter carrying a luciferase reporter and plasmids expressing wild-type or mutant serum- and glucocorticoid-induced kinase 1 (Sgk1) mRNA were stimulated with AGE to identify the signalling pathway. Results. The AGEs, stimulated in a time- and dose-dependent manner, enhanced αENaC mRNA expression and sodium uptake in mpkCCDcl4 cells. The AGEs also significantly stimulated Sgk1 mRNA and Sgk1 activity in a time- and dose-dependent manner. Co-transfected with plasmid expressing mutant Sgk1 significantly limited stimulated αENaC promoter-driven luciferase activity by AGEs in mpkCCDcl4 cells. Conclusion. Experimental results indicate that AGEs induced αENaC expression and increased sodium uptake in renal CCD cells. The mechanism through which AGEs activate αENaC expression may be via activation of Sgk1 in mpkCCDcl4 cells.
Original language | English |
---|---|
Pages (from-to) | 722-731 |
Number of pages | 10 |
Journal | Nephrology Dialysis Transplantation |
Volume | 22 |
Issue number | 3 |
DOIs | |
State | Published - 03 2007 |
Keywords
- Advanced glycation end products
- Cortical collecting duct cells
- Diabetic nephropathy
- Epithelial sodium channel
- Serum- and glucocorticoid-induced kinase