Abstract
Objectives Aldehyde dehydrogenase 1 (ALDH1) is associated with tumorigenesis, and shown to identify cancer stem cells (CSC)-like cells. We aimed to investigate the significance of ALDH1 in oral squamous cell carcinoma (OSCC) and its correlation with DNMT3b and immune evasion in the present study. Methods We retrospectively analyzed the clinical outcomes of OSCC patients and examined its correlation with the levels of ALDH1 in tumors and circulating myeloid-derived suppressor cells (MDSCs) in the peripheral blood. Furthermore, the relationships between the DNMT3b, ALDH1 expression, and immune response were examined via clinical specimens and cellular and animal experiments. We also investigated the therapeutic potential of DNA hypomethylating agents in OSCC. Results Our data revealed that the levels of ALDH1 expression were linked to treatment resistance, CSC-like properties, higher circulating MDSC and poor prognosis for OSCC. The radiation resistance noted in ALDH1-positive tumors was associated with augmented radiation-induced increases in the expression of programmed death ligand (PD-L1) and the activation of MDSCs. Furthermore, there was a positive link between ALDH1 and DNMT3b expression shown by clinical specimens and cellular experiments. DNA hypomethylating agents attenuated the radioresistance of ALDH1-positive cancer cells associated with the decreased ALDH1 and the increased DNA damages. In addition, the activation of MDSCs and the expression of PD-L1 were significantly attenuated by epigenetic therapy. Conclusions Our findings suggested that ALDH1 played an important role in treatment response and the tumor-promoting microenvironment in OSCC. Moreover, epigenetic therapy could be a promising strategy for the treatment of OSCC.
Original language | English |
---|---|
Pages (from-to) | 88-96 |
Number of pages | 9 |
Journal | Oral Oncology |
Volume | 73 |
DOIs | |
State | Published - 10 2017 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier Ltd
Keywords
- ALDH1
- DNMT3b
- Hypomethylating agent
- Immune
- OSCC
- Radiation