TY - JOUR
T1 - Estimating the Delivery Efficiency of Drug-Loaded Microbubbles in Cancer Cells with Ultrasound and Bioluminescence Imaging
AU - Liao, Ai Ho
AU - Li, Ying Kai
AU - Lee, Wei Jiunn
AU - Wu, Ming Fang
AU - Liu, Hao Li
AU - Kuo, Min Liang
PY - 2012/11
Y1 - 2012/11
N2 - The application of drug-loaded microbubbles (MBs) in combination with ultrasound (US), which results in an increase in capillary permeability at the site of US-sonication-induced MB destruction, may be an efficient method of localized drug delivery. This study investigated the mechanism underlying the US-mediated release of luciferin-loaded MBs through the blood vessels to targeted cells using an in vivo bioluminescence imaging (BLI) system. The luciferin-loaded MBs comprised an albumin shell with a diameter of 1234 ± 394 nm (mean ± SD) and contained 2.48 × 109 bubbles/mL; within each MB, the concentration of encapsulated luciferin was 1.48 × 10-10 mg/bubble. The loading efficiency of luciferin in MBs was only about 19.8%, while maintaining both the bioluminescence and acoustic properties. In vitro and in vivo BLI experiments were performed to evaluate the US-mediated release of luciferin-loaded MBs. For in vitro results, the increase in light emission of luciferin-loaded albumin-shelled MBs after destruction via US sonication (6.24 ± 0.72 × 107 photons/s) was significantly higher than that in the luciferin-loaded albumin-shelled MBs (3.11 ± 0.33 × 107 photons/s) (p < 0.05). The efficiency of the US-mediated release of luciferin-loaded MBs in 4T1-luc2 tumor-bearing mice was also estimated. The signal intensity of the tumor with US destruction at 3 W/cm2 for 30 s was significantly higher than without US destruction at 3 (p = 0.025), 5 (p = 0.013), 7 (p = 0.012) and 10 (p = 0.032) min after injecting luciferin-loaded albumin-shelled MBs. The delivery efficiency was, thus, improved with US-mediated release, allowing reduction of the total injection dose of luciferin.
AB - The application of drug-loaded microbubbles (MBs) in combination with ultrasound (US), which results in an increase in capillary permeability at the site of US-sonication-induced MB destruction, may be an efficient method of localized drug delivery. This study investigated the mechanism underlying the US-mediated release of luciferin-loaded MBs through the blood vessels to targeted cells using an in vivo bioluminescence imaging (BLI) system. The luciferin-loaded MBs comprised an albumin shell with a diameter of 1234 ± 394 nm (mean ± SD) and contained 2.48 × 109 bubbles/mL; within each MB, the concentration of encapsulated luciferin was 1.48 × 10-10 mg/bubble. The loading efficiency of luciferin in MBs was only about 19.8%, while maintaining both the bioluminescence and acoustic properties. In vitro and in vivo BLI experiments were performed to evaluate the US-mediated release of luciferin-loaded MBs. For in vitro results, the increase in light emission of luciferin-loaded albumin-shelled MBs after destruction via US sonication (6.24 ± 0.72 × 107 photons/s) was significantly higher than that in the luciferin-loaded albumin-shelled MBs (3.11 ± 0.33 × 107 photons/s) (p < 0.05). The efficiency of the US-mediated release of luciferin-loaded MBs in 4T1-luc2 tumor-bearing mice was also estimated. The signal intensity of the tumor with US destruction at 3 W/cm2 for 30 s was significantly higher than without US destruction at 3 (p = 0.025), 5 (p = 0.013), 7 (p = 0.012) and 10 (p = 0.032) min after injecting luciferin-loaded albumin-shelled MBs. The delivery efficiency was, thus, improved with US-mediated release, allowing reduction of the total injection dose of luciferin.
KW - High-frequency ultrasound
KW - In vivo bioluminescence imaging system
KW - Luciferase-expressing breast cancer cell
KW - Luciferin-loaded microbubbles
UR - http://www.scopus.com/inward/record.url?scp=84866977909&partnerID=8YFLogxK
U2 - 10.1016/j.ultrasmedbio.2012.07.013
DO - 10.1016/j.ultrasmedbio.2012.07.013
M3 - 文章
C2 - 22929655
AN - SCOPUS:84866977909
SN - 0301-5629
VL - 38
SP - 1938
EP - 1948
JO - Ultrasound in Medicine and Biology
JF - Ultrasound in Medicine and Biology
IS - 11
ER -