Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks

Ramendra Pati Pandey, Jasmina Vidic, Riya Mukherjee, Chung Ming Chang*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

7 Scopus citations

Abstract

Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.

Original languageEnglish
Article number612
JournalPharmaceutics
Volume15
Issue number2
DOIs
StatePublished - 11 02 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • advanced technologies
  • biological models
  • drug delivery
  • in vitro/in vivo correlation
  • liposomes
  • nanoparticles

Fingerprint

Dive into the research topics of 'Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks'. Together they form a unique fingerprint.

Cite this