TY - JOUR
T1 - Extracellular adenosine regulates naive T cell development and peripheral maintenance
AU - Cekic, Caglar
AU - Sag, Duygu
AU - Day, Yuan Ji
AU - Linden, Joel
PY - 2013/11
Y1 - 2013/11
N2 - Adenosine produced as a byproduct of metabolic activity is present in all tissues and produces dose-dependent suppression of TCR signaling. Naive T cell maintenance depends on inhibition of TCR signals by environmental sensors, which are yet to be fully defined. We produced mice with a floxed adenosine A2A receptor (A2AR) gene, Adora2a, and show that either global A2AR deletion or cre-mediated T cell deletion elicits a decline in the number of naive but not memory T cells. A2AR signaling maintains naive T cells in a quiescent state by inhibiting TCRinduced activation of the phosphatidylinositide 3-kinase (PI3K)-AKT pathway, thereby reducing IL-7Rα down-regulation and naive T cell apoptosis. Patterns of IL-7Rα expression on T cells in chimeric mice reconstituted with Adora2a+/+ and Adora2a-/- bone marrow cells suggest that decreased IL-7Rα in naive T cells is a cell-intrinsic consequence of Adora2a deletion. In addition, A2AR expression increases in early thymic T cell development and contributes to progression of double-negative thymic precursors to single-positive thymocytes with increased IL-7Rα expression. Therefore, A2AR signaling regulates T cell development and maintenance to sustain normal numbers of naive T cells in the periphery.
AB - Adenosine produced as a byproduct of metabolic activity is present in all tissues and produces dose-dependent suppression of TCR signaling. Naive T cell maintenance depends on inhibition of TCR signals by environmental sensors, which are yet to be fully defined. We produced mice with a floxed adenosine A2A receptor (A2AR) gene, Adora2a, and show that either global A2AR deletion or cre-mediated T cell deletion elicits a decline in the number of naive but not memory T cells. A2AR signaling maintains naive T cells in a quiescent state by inhibiting TCRinduced activation of the phosphatidylinositide 3-kinase (PI3K)-AKT pathway, thereby reducing IL-7Rα down-regulation and naive T cell apoptosis. Patterns of IL-7Rα expression on T cells in chimeric mice reconstituted with Adora2a+/+ and Adora2a-/- bone marrow cells suggest that decreased IL-7Rα in naive T cells is a cell-intrinsic consequence of Adora2a deletion. In addition, A2AR expression increases in early thymic T cell development and contributes to progression of double-negative thymic precursors to single-positive thymocytes with increased IL-7Rα expression. Therefore, A2AR signaling regulates T cell development and maintenance to sustain normal numbers of naive T cells in the periphery.
UR - http://www.scopus.com/inward/record.url?scp=84888105684&partnerID=8YFLogxK
U2 - 10.1084/jem.20130249
DO - 10.1084/jem.20130249
M3 - 文章
C2 - 24145516
AN - SCOPUS:84888105684
SN - 0022-1007
VL - 210
SP - 2693
EP - 2706
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 12
ER -