Extracorporeal shock wave therapy protected the functional and architectural integrity of rodent urinary bladder against ketamine-induced damage

Yu-Ting Chen, K.-H. Huang, J.Y. Chiang, P.-H. Sung, C.-R. Huang, Y.-C. Chu, F.-C. Chuang, H.-K. Yip

Research output: Contribution to journalJournal Article peer-review

3 Scopus citations

Abstract

This study tested the hypothesis that extracorporeal-shock-wave (ECSW) protected the functional and anatomical integrity of rat urinary-bladder against ketamine-induced damage. In in vitro study, the rat bladder smooth muscle cells (RBdSMCs) were categorized into G1 (sham-control), G2 (RBdSMCs + menadione), G3 (RBdSMCs + ECSW) and G4 (RBdSMCs + menadione + ECSW). The results showed protein expressions of oxidative-stress/mitochondrial-damaged biomarkers (NOX-1/NOX-2/oxidized protein/cytosolic-cytochrome-C/cyclophilin-D), inflammatory markers (MyD88/TRAF6/p-IKB-α/NF-κB/TNF-α/IL-6/IL-1ß/MMP-9/iNOS), and cell-stress response sig-nalings (ASK1/p-MKK4/p-MKK7/ERK1/2//p-JNK/p-p38/p-53) were significantly increased in G2 than in G1 and G3, and those were significantly reversed in G4 (all p < 0.0001). Adult-male SD rats (n = 24) were equally categorized into group 1 (sham-control), group 2 (ketamine/30 mg/kg/daily i.p. injection for four weeks), group 3 [ketamine/30 mg/kg + ECSW/optimal energy (0.12 mJ/mm/ 120 impulses/at 3 h and days 3/7/14/21/28 after ketamine administration)] and group 4 [(ke-tamine/30 mg/kg + ECSW/higher energy (0.16 mJ/mm/120 impulses)] and animals were eutha-nized by day 42. The results showed the urine levels of pro-inflammatory cytokines (TNF-α/IL-6) were lowest in group 1, highest in group 2 and significantly higher in group 3 than in group 4 at days 1/7/14/28 (all p < 0.0001). The duration of urinary bladder contraction was lowest in group 2, highest in group 1 and significantly higher in group 4 than in group 3, whereas the maximal pressure of urinary bladder exhibited an opposite pattern of bladder contraction among the groups (all p < 0.0001). The histopathological findings of fibrosis/inflammation/keratinization and protein expressions of oxidative-stress/mitochondrial-damaged biomarkers (NOX-1/NOX-2/oxidized protein/cytosolic-cytochrome-C/cyclophilin-D), and inflammatory (TLR-2/TLR-4/MyD88/TRAF6/p-IKB-α/NF-κB/ TNF-α/IL-1ß/MMP-9/iNOS) and cell-stress response (ASK1/p-MKK4/p-MKK7/ERK1/2//p-JNK/ p-p38) signalings and apoptotic/fibrotic biomarkers (cleaved-caspas3/cleaved-PARB/Smad3/TFG-ß) exhibited an identical pattern of urine proinflammatory cytokine among the groups (all p < 0.0001). ECSW effectively attenuated ketamine-induced bladder damage and dysfunction.
Original languageAmerican English
JournalBiomedicines
Volume9
Issue number10
DOIs
StatePublished - 2021

Keywords

  • Cell stress signaling
  • Cell stress signaling
  • Extracorporeal shock wave
  • Extracorporeal shock wave
  • Inflammation
  • Inflammation
  • Ketamine
  • Ketamine
  • Oxidative stress
  • Oxidative stress
  • Urinary bladder dysfunction
  • Urinary bladder dysfunction

Fingerprint

Dive into the research topics of 'Extracorporeal shock wave therapy protected the functional and architectural integrity of rodent urinary bladder against ketamine-induced damage'. Together they form a unique fingerprint.

Cite this