TY - JOUR
T1 - Fast and label-free detection of procalcitonin in human serum for sepsis using a WTex-based extended-gate field-effect transistor biosensor
AU - Pan, Tung Ming
AU - Hsiung, Hung Ming
AU - Chen, Chao Hung
AU - Her, Jim Long
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/15
Y1 - 2025/1/15
N2 - In this article, we present the first instance of depositing WTex-sensitive films with varying thicknesses (3, 4, and 5 nm) onto flexible polyimide substrates using radio-frequency sputtering. These films were used to create an extended-gate field-effect transistor (EGFET) for pH sensing and detecting procalcitonin (PCT) in the sera of patients with sepsis or bacterial infections. Among the films, the 4 nm WTex film exhibited high sensitivity (59.57 mV/pH), minimal hysteresis (∼0.8 mV), and a low drift rate (0.14 mV/h). Additionally, this WTex-based EGFET sensor retained a pH sensitivity of 59.2 mV/pH even after 180 days of operation and exhibited excellent mechanical flexibility, enduring 500 bending cycles without degradation. Moreover, PCT antibodies, activated using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide, were immobilized on the WTex film functionalized with 3-aminopropyl triethoxysilane. This effective immobilization enabled the specific binding of PCT antigens. The WTex-based EGFET biosensor demonstrated high sensitivity (18.12 mV/pCPCT) across a wide dynamic range (1 fg/mL to 1 μg/mL). Furthermore, the PCT concentrations in patient sera, whether from individuals with or without sepsis or bacterial infections, measured by our biosensor were comparable to results obtained using clinical enzyme-linked immunosorbent assay kits.
AB - In this article, we present the first instance of depositing WTex-sensitive films with varying thicknesses (3, 4, and 5 nm) onto flexible polyimide substrates using radio-frequency sputtering. These films were used to create an extended-gate field-effect transistor (EGFET) for pH sensing and detecting procalcitonin (PCT) in the sera of patients with sepsis or bacterial infections. Among the films, the 4 nm WTex film exhibited high sensitivity (59.57 mV/pH), minimal hysteresis (∼0.8 mV), and a low drift rate (0.14 mV/h). Additionally, this WTex-based EGFET sensor retained a pH sensitivity of 59.2 mV/pH even after 180 days of operation and exhibited excellent mechanical flexibility, enduring 500 bending cycles without degradation. Moreover, PCT antibodies, activated using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide, were immobilized on the WTex film functionalized with 3-aminopropyl triethoxysilane. This effective immobilization enabled the specific binding of PCT antigens. The WTex-based EGFET biosensor demonstrated high sensitivity (18.12 mV/pCPCT) across a wide dynamic range (1 fg/mL to 1 μg/mL). Furthermore, the PCT concentrations in patient sera, whether from individuals with or without sepsis or bacterial infections, measured by our biosensor were comparable to results obtained using clinical enzyme-linked immunosorbent assay kits.
KW - Extended-gate field-effect transistor (EGFET)
KW - Procalcitonin (PCT)
KW - Sepsis
KW - WTe sensitive film
UR - http://www.scopus.com/inward/record.url?scp=85207587811&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2024.116894
DO - 10.1016/j.bios.2024.116894
M3 - 文章
AN - SCOPUS:85207587811
SN - 0956-5663
VL - 268
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 116894
ER -