Abstract
Fibril formation seems to be a general property of all proteins. Its occurrence in hen or human lysozyme depends on certain conditions, namely acidic pHs or the presence of some additives. This paper studies the interaction of lysozyme with sodium dodecyl sulfate (SDS) at pH 9.2, using UV-visible spectrophotometry, circular dichroism (CD) spectropolarimetry, electron microscopy (EM) and chemometry. Based on observations such as the strange increase in absorbance at 650 nm (pH 9.2) and the presence of intermediates, it is assumed that lysozyme fibrils have been formed at pH 9.2 in the presence of SDS as an anionic surfactant. Thioflavin T emission fluorescence and an EM image confirmed this assumption. β-cyclodextrin was then used as a turbidity inhibitor to establish its effect on the distribution of intermediates that participate in fibril formation.
Original language | English |
---|---|
Pages (from-to) | 55-61 |
Number of pages | 7 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 60 |
Issue number | 1 |
DOIs | |
State | Published - 15 10 2007 |
Keywords
- Chemometry
- Electron microscopy
- Fibril
- Lysozyme
- Sodium dodecyl sulfate
- β-Cyclodextrin