Functional interdependence of hematopoietic stem cells and their niche in oncogene promotion of myeloproliferative neoplasms: the 159th biomedical version of “it takes two to tango”

Huichun Zhan, Kenneth Kaushansky*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

4 Scopus citations

Abstract

The role of stem cells in normal and neoplastic hematopoiesis is well established. However, neither normal nor neoplastic hematopoietic stem cells (HSCs) develop in isolation and accumulating evidence indicates that a critical developmental role is played by the perivascular “niche.” The cellular, humoral, and cell surface contacts that provide the proper environment for HSC survival, proliferation, and differentiation are becoming increasingly better understood. A number of studies have established that endothelial cells (ECs), several types of perivascular stromal cells, and megakaryocytes (MKs) provide several cell surface and secreted molecules required for HSC development. Accumulating evidence also indicates that the normal stem cell niche is altered in patients with hematological neoplasms and that the “neoplastic niche” plays an important role in promoting malignant and suppressing normal blood cell development in such patients. To explore this concept in the myeloproliferative neoplasms (MPNs), we employed a murine model to determine the effects of Jak2V 617 F, an oncogene found in a majority of such patients, in marrow ECs and MKs and their effect on promoting neoplastic and suppressing normal hematopoiesis. We found that Jak2V 617 F has profound effects on both cell types, which together are critical for the growth advantage and radioresistance shown by Jak2V 617 F-bearing HSCs. Such findings should provide new approaches to the treatment of patients with MPNs.

Original languageEnglish
Pages (from-to)24-30
Number of pages7
JournalExperimental Hematology
Volume70
DOIs
StatePublished - 02 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 Elsevier Ltd

Fingerprint

Dive into the research topics of 'Functional interdependence of hematopoietic stem cells and their niche in oncogene promotion of myeloproliferative neoplasms: the 159th biomedical version of “it takes two to tango”'. Together they form a unique fingerprint.

Cite this