TY - JOUR
T1 - Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes
AU - Chang, Ming-Ling
AU - Chen, Jeng Chang
AU - Yeh, Chau Ting
AU - Chang, Ming Yu
AU - Liang, Chun Kai
AU - Chiu, Cheng-Tang
AU - Lin, Deng-Yn
AU - Liaw, Yun-Fan
PY - 2008/4/1
Y1 - 2008/4/1
N2 - Although in vivo nonviral gene delivery to the liver is critical for hepatic gene therapy, there are a number of technical obstacles. Enhanced green fluorescent protein (EGFP)-encoding DNA was coated onto gold particles (gold-DNA), dissolved in phosphate-buffered saline (pure DNA), and prepared as a polymer adjuvant (jetPEI)-galactosidase solution (polymer-DNA). Murine liver transfection was attempted by nonviral approaches, which included hydrodynamics-based transfection (HBT) of pure DNA, transport and transhepatic injection of polymer-DNA, and gene gun bombardment with pure DNA, gold-DNA, and polymer-DNA. Only HBT and gene gun bombardment yielded significant numbers of EGFP+ hepatocytes. With the exception of the edge of the liver, HBT had a whole-liver transfection rate of 20% under optimized conditions. HBT resulted in marked hepatic infarctions, most prominently at the edge of the liver. For gene gun bombardment, the transfection rate was pressure dependent and limited to 15% for gold-DNA. Triple or quadruple bombardment at 30 psi resulted in a transfection rate comparable to that of a single bombardment at higher pressure, but was associated with minimal scattered hepatic necrosis. The EGFP+ hepatocytes were located mainly in the superficial layers. We conclude that both HBT and gene gun bombardment yielded efficient murine hepatocyte transfection in vivo. Severe hepatic infarction impedes foreign gene expression in the superficial hepatocytes after HBT. Repeated bombardment with gold-DNA, using an accelerated particle gene gun at 30 psi, is a potential alternative to HBT for delivering genes to superficial hepatocytes in vivo, although gold-related hepatic necrosis is a persistent problem.
AB - Although in vivo nonviral gene delivery to the liver is critical for hepatic gene therapy, there are a number of technical obstacles. Enhanced green fluorescent protein (EGFP)-encoding DNA was coated onto gold particles (gold-DNA), dissolved in phosphate-buffered saline (pure DNA), and prepared as a polymer adjuvant (jetPEI)-galactosidase solution (polymer-DNA). Murine liver transfection was attempted by nonviral approaches, which included hydrodynamics-based transfection (HBT) of pure DNA, transport and transhepatic injection of polymer-DNA, and gene gun bombardment with pure DNA, gold-DNA, and polymer-DNA. Only HBT and gene gun bombardment yielded significant numbers of EGFP+ hepatocytes. With the exception of the edge of the liver, HBT had a whole-liver transfection rate of 20% under optimized conditions. HBT resulted in marked hepatic infarctions, most prominently at the edge of the liver. For gene gun bombardment, the transfection rate was pressure dependent and limited to 15% for gold-DNA. Triple or quadruple bombardment at 30 psi resulted in a transfection rate comparable to that of a single bombardment at higher pressure, but was associated with minimal scattered hepatic necrosis. The EGFP+ hepatocytes were located mainly in the superficial layers. We conclude that both HBT and gene gun bombardment yielded efficient murine hepatocyte transfection in vivo. Severe hepatic infarction impedes foreign gene expression in the superficial hepatocytes after HBT. Repeated bombardment with gold-DNA, using an accelerated particle gene gun at 30 psi, is a potential alternative to HBT for delivering genes to superficial hepatocytes in vivo, although gold-related hepatic necrosis is a persistent problem.
UR - http://www.scopus.com/inward/record.url?scp=42549115708&partnerID=8YFLogxK
U2 - 10.1089/hum.2007.152
DO - 10.1089/hum.2007.152
M3 - 文章
C2 - 18366343
AN - SCOPUS:42549115708
SN - 1043-0342
VL - 19
SP - 391
EP - 395
JO - Human Gene Therapy
JF - Human Gene Therapy
IS - 4
ER -