Abstract
Background: Dysregulation of pericellular proteolysis usually accounts for cancer cell invasion and metastasis. Isolation of a cell-surface protease system for lung cancer metastasis is an important issue for mechanistic studies and therapeutic target identification. Methods: Immunohistochemistry of a tissue array (n = 64) and TCGA database (n = 255) were employed to assess the correlation between serine protease inhibitors (SPIs) and lung adenocarcinoma progression. The role of SPI in cell motility was examined using transwell assays. Pulldown and LC/MS/MS were performed to identify the SPI-modulated novel protease(s). A xenografted mouse model was harnessed to demonstrate the role of the SPI in lung cancer metastasis. Results: Hepatocyte growth factor activator inhibitor-2 (HAI-2) was identified to be downregulated following lung cancer progression, which was related to poor survival and tumour invasion. We further isolated a serum-derived serine protease, plasmin, to be a novel target of HAI-2. Downregulation of HAI-2 promotes cell surface plasmin activity, EMT, and cell motility. HAI-2 can suppress plasmin-mediated activations of HGF and TGF-β1, EMT and cell invasion. In addition, downregulated HAI-2 increased metastasis of lung adenocarcinoma via upregulating plasmin activity. Conclusion: HAI-2 functions as a novel inhibitor of plasmin to suppress lung cancer cell motility, EMT and metastasis.
| Original language | English |
|---|---|
| Pages (from-to) | 499-511 |
| Number of pages | 13 |
| Journal | British Journal of Cancer |
| Volume | 120 |
| Issue number | 5 |
| DOIs | |
| State | Published - 05 03 2019 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019, Cancer Research UK.